
Unsupervised Geometry-Aware Deep LiDAR Odometry

Younggun Cho1, Giseop Kim1 and Ayoung Kim1∗

Abstract— Learning-based ego-motion estimation approaches
have recently drawn strong interest from researchers, mostly
focusing on visual perception. A few learning-based approaches
using Light Detection and Ranging (LiDAR) have been re-
ported; however, they heavily rely on a supervised learning
manner. Despite the meaningful performance of these ap-
proaches, supervised training requires ground-truth pose labels,
which is the bottleneck for real-world applications. Differing
from these approaches, we focus on unsupervised learning for
LiDAR odometry (LO) without trainable labels. Achieving
trainable LO in an unsupervised manner, we introduce the
uncertainty-aware loss with geometric confidence, thereby al-
lowing the reliability of the proposed pipeline. Evaluation on the
KITTI, Complex Urban, and Oxford RobotCar datasets demon-
strate the prominent performance of the proposed method
compared to conventional model-based methods. The proposed
method shows a comparable result against SuMa (in KITTI),
LeGO-LOAM (in Complex Urban), and Stereo-VO (in Oxford
RobotCar). The video and extra-information of the paper are
described in https://sites.google.com/view/deeplo.

I. INTRODUCTION & BACKGROUND

Odometry (ego-motion) estimation is a core module in
robot navigation that presents various applications to an
autonomous robot [1] and 3D mapping [2, 3]. Traditionally,
most odometry modules have focused on a model-based
approach using cameras [4, 5, 6] and LiDARs [7, 8, 9]. De-
spite their superior performances and maturity, model-based
methods are exposed to challenges such as vulnerability to
environmental disturbance and parameter selection. There-
fore, recent studies have examined learning-based methods
but mostly for visual odometry in both a supervised [10, 11]
and an unsupervised [12, 13] manner.

Efforts toward learning-based odometry using a range
sensor (e.g. LiDAR) have been recently initiated. However,
the major challenge is handling a dense point cloud by
feeding it into a deep neural network, while several recent
studies have focused on feeding the point cloud directly to
the network [14, 15]. Before describing the proposed method,
we briefly summarize the model-based and learning-based
LiDAR odometry in the literature.

A. Model-based Odometry Estimation

For range sensors such as an RGB-D camera and LiDAR,
many model-based methods [8, 17, 9] including the odometry
module, have been proposed that minimize the error between
two consecutive frames or a frame and a map using the
Iterated Closest Point (ICP) [18, 19, 20, 2]. Recently, Behley

1Y. Cho, G. Kim and A. Kim are with the Department of Civil
and Environmental Engineering, KAIST, Daejeon, S. Korea [yg.cho,
paulgkim, ayoungk]@kaist.ac.kr

This work is fully supported by [Deep Learning based Camera and
LIDAR SLAM] project funded by Naver Labs Corporation.

Fig. 1: A point cloud map using learned LiDAR odometry.
The figure shows a sequence of the Complex Urban dataset
[16]. The triangle indicates the start position, and point
clouds are colored with respect to timestamps (mission time).
A sample LiDAR frame is also depicted at the bottom.

and Stachniss proposed a surfel-based mapping method,
called SuMa, for 3D laser range data [9]. In the stream
of LO studies, lidar odometry and mapping (LOAM) [21]
presented an impressive performance by utilizing local fea-
ture tracking and mapping. Later, Shan and Englot [22]
proposed a lightweight extension of LOAM called LeGO-
LOAM exploiting ground-plane.

B. Learning-based Odometry Estimation

Unlike visual sensors, there are few learning-based meth-
ods for range sensors. The range sensor data (e.g., 3D point
cloud) is sparse and irregular; this fact makes it difficult to
directly employ conventional modules such as 2D convolu-
tion and upconvolution due to a memory inefficiency issue.
Methods that consume irregular point cloud data directly and
achieve permutation invariance have been recently proposed
for object recognition or the segmentation problem [14, 23].
However, direct leverage of point cloud is still challenged
due to the data type and computational cost. To alleviate
these issues, studies instead proposed rasterized image-based
learning methods for 3D LiDAR odometry [24, 25, 26]. Early
work in Nicolai et al. [24] learned from labels to estimate 2D
LiDAR motion. Later, Velas et al. [25] reported 3D motion
estimation by solving the classification problem. Li et al.
[26] reported meaningful results by outperforming existing
model-based approaches, LOAM. However, when achieving
the performance, the authors leveraged pre-trained 3D object
semantic labels together with the ground-truth pose labels.

C. Contributions

For robotics application, we believe that unsupervised
learning is the key of achieving generality. Unlike the exist-
ing learning-based odometry training in a supervised manner,
we introduce losses and a training strategy for unsupervised
deep LiDAR odometry. For efficiency, we utilize 2D spher-
ical projection for input representation. Also, we formulate
the loss function using point-to-plane ICP with uncertainty
estimation;thus, an overall training pipeline was conducted
in an unsupervised manner. Fig. 1 shows the trajectory of
the Complex Urban dataset [16] trained without ground-
truth pose labels. This figure indicates that our method
successfully captures the relative motion of a large scale
trajectory (11 km) without ground-truth. To the best of our
knowledge, our work is the first unsupervised learning-based
odometry for a range sensor. Our contributions are as follow:

• For efficient unsupervised training and inference, we
used vertexes as inputs and used them on a geometry-
aware consistency loss calculation. By doing so, the
time-consuming labeling procedure was alleviated in an
unsupervised fashion.

• The proposed learning system can be generally used
for a LiDAR point cloud (submap) regardless of the
hardware type or configuration (e.g., the 3D surrounding
of the KITTI dataset and the 2D push broom of the
Complex Urban and Oxford RobotCar dataset).

• This paper aims the generalizability of the algorithm to
various data types and environments without ground-
truth. We introduce and validate a transfer learning
strategy of using initial weight trained from KITTI to
successfully train more challenging datasets.

II. PROPOSED METHOD

Our approach (Fig. 2) is composed of feature networks
(VertexNet) and a pose network (PoseNet). VertexNet en-
codes of consecutive frames and decodes point uncertainties.
PoseNet estimates the relative motion from encoded feature
maps.

Fig. 2: The proposed network and our unsupervised training
scheme. The network is composed of VertexNet and PoseNet.
VertexNet encodes input frames and decodes point uncer-
tainties, and features maps are forwarded into PoseNet to
estimate the relative motion.

A. Proposed Network

As shown in Fig. 2, the proposed network is composed of
2 parts (VertexNet and PoseNet) with 4 blocks (Conv, Res-
D, Res-S, and Fully).The spherically projected input frames
are used as the input of the VertexNet. The encoded feature
maps from the VertexNet are piped into PoseNet, which is
designed as fully connected networks that transfer features
to predict translation and rotation between the input frames.
Inspired by [27], VertexNet consists of 4 pairs of encoding-
decoding layers of convolution (Conv) and residual blocks
(Res-D) with horizontal and vertical strides (2, 1), while
bottleneck layers have residual blocks with stride (1, 1) (Res-
S). PoseNet is composed of 4 residual blocks with stride
(2, 2) to encode the feature map to the feature vectors size
of 1024 and fully connected layers (Fully) to estimate the
relative pose xt,t+1 = [t ∈ R3,q ∈ R4]t,t+1.

B. Input Representation

1) Spherical Projection: To cope with the unordered
characteristics of a LiDAR point cloud, we reformulate
it using an image-coordinate-parameterized representation.
Unlike a rasterized image (e.g., the range image in [25]),
this representation preserves the 3D point information as real
numbers. We employ projection function π(·) : R3 7→ R2

to project the 3D point cloud into a 2D image plane on
spherical coordinates. Each 3D point p = (px, py, pz) in a
sensor frame is mapped onto the 2D image plane u = (u, v)
represented as(

u

v

)
=

(
(fh/2− arctan(py, px))/δh

(fvu − arctan(pz, d))/δv

)
, (1)

where depth is d = (px2 + py2)1/2; fh and fv are the
horizontal (azimuth) and vertical (elevation) field of view
(FOV), respectively; and vertical FOV fv = fvu + fvl is
composed of upper (fvu) and lower (fvl) parts. Here, δu
and δv are the horizontal and vertical resolutions for pixel
representation. If several 3D points are projected onto the
same pixel coordinates, then we choose the nearest point

Fig. 3: A LiDAR-induced vertex (V) map is used as input
for the network. The first row shows raw point clouds with
the local axis in the center (RGB represents the XYZ axis).
The bottom row is input vertex and color-coded with respect
to the range from the origin for visualization.

Fig. 4: Estimated normal map (top) and confidence map
(bottom). For visualization, normal vectors are shifted to
have values of 0 to 1. The confidence map represents
smoothness of normal vectors.

as a pixel value. We define the mapped representation as
vertex map V that has 2D coordinates u and 3-channel values
v = [vx, vy, vz] as a 3D point. Fig. 3 shows an example point
cloud Pt on timestamp t, corresponding vertex map Vt.

2) Normal Vector Estimation: To enforce geometric con-
sistency over the training process, we need to estimate a
normal map N which consists of normal vectors n of
vertices v in a vertex map V . Among various normal vector
estimation methods, optimization-based methods that apply
Singular Value Decomposition (SVD) or principal compo-
nent analysis (PCA) are well-known for accurate estimation
results. However, it is difficult to integrate direct optimization
approaches into the learning process.

To embed the normal vector estimation into training with
back-propagated gradients, we adopt averaging methods us-
ing pairs of neighbor pixels. We choose 4 neighbor conven-
tions to compute normal vectors similar to [28, 29].

Considering point sparsity and discontinuity, we place
more weight on a vertex that is geometrically closer to the
center vertex by introducing weight w. Formally, the weight
is expressed as w1,2 = exp{−0.5|r(v1) − r(v2)|}. Each
normal vector n of a target normal map N is represented as

np =
∑
pi∈P

wp0,p(vp0
− vp)× wp1,p(vp1

− vp), (2)

where r(·) is range value and P represents 4 pairs of the
center vertex vp = V (up) for the center pixel p. Another
key weighting factor for our loss is a confidence map that
denotes the similarity of normal vectors with respect to the
neighbors. The confidence map (C) is expressed as

C(up) =
∑
pi∈P

1

4
(1− cos(np,npi

)) (3)

where the confidence level represents the reliability and
smoothness of surface normals. Estimated normal map (N)
and corresponding confidence map C are displayed in Fig. 4.
As expected, the confidence map shows higher values for flat
surfaces such as walls and the ground and lower values for
trees or vehicles. We filter out the inconsistent normal vectors
using the confidence below the threshold (δc = 0.4).

C. Geometry-aware Losses

1) Uncertainty-weighted ICP Loss: For unsupervised
training, we integrate the geometric loss into the deep-
learning framework. Given the predicted relative motion
xt,t+1, we define the orthogonal distance of the point corre-
spondences as the loss value. For the correspondence search,

projective data association is utilized. Each vertex in the
vertex map vt+1 ∈ Vt+1 was transformed into a frame t as
v′t = Tt,t+1vt+1, where Tt,t+1 ∈ R4×4 is a transformation
matrix. Next, the corresponding vertex and normal vectors
are assigned via a projection function π(·),

v̄t = V (π(v′t)) (4)
n̄t = N(π(v′t)). (5)

Using v̄t and n̄t, corresponding vertex and normal vectors
of vt+1 on frame t, we can compute the orthogonal distance
of associated points. The distance function is represented as

d(vt+1) = n̄t · (Tt,t+1vt+1 − v̄t)C(vt+1). (6)

Also, predicted point uncertainty of VertexNet is applied for
robust optimization. Following [30], we formulate the ICP
loss as

Licp,w =
∑

vt+1∈Vt+1

|d(vt+1)|1
σ2
t+1

+ log σ2
t+1, (7)

where σt+1 = Σ(ut+1) represents estimated uncertainty on
a pixel ut+1 = π(vt+1).

2) FOV Loss: We also introduce FOV loss Lfov , which
prevents divergence training of the out of FOV condition.
During unsupervised training, the estimation tends to fall into
a trivial solution by making zero covisibility between frames.
This is because the ICP loss Licp is zero when there are no
correspondences, and a naı̈ve ICP loss may lead the network
to a large relative motion that yields no correspondences. To
avoid such cases, we use a penalty loss as a hard-counting
loss of out of FOV points. The FOV loss is expressed as

Lfov =
∑

v∈Vt+1

I(π(Tt,t+1v)− (w, h)) + I(−π(Tt,t+1)) (8)

where I represents the Heaviside function and (w, h) are the
width and height of the vertex map, respectively.

3) Overall Loss: Finally, the overall unsupervised loss is
obtained as

L = Licp,w + λLfov (9)

where λ is a balancing factor. The characteristics of loss L
on motion perturbation is depicted in Fig. 5. Each curve on

(a) Perturbation on translation (b) Perturbation on rotation

Fig. 5: The tendency of the Unsupervised loss (L) (z-axis)
with respect to motion perturbation (x and y-axis), plotted
with the ground-truth pose (red cross). The figure repre-
sents the validity of the loss over large motion perturbation
(±10 m on translation and ±10◦ on rotation). Colors in error
bars indicate the magnitude of unsupervised loss L.

-300 -200 -100 0 100 200 300
x [m]

0

100

200

300

400

500
z

[m
]

-400 -200 0 200 400
x [m]

-200

-100

0

100

200

300

400

500

600

z
[m

]

-200 -100 0 100 200 300 400
x [m]

0

100

200

300

400

500

z
[m

]

0 200 400 600
x [m]

-300

-200

-100

0

100

200

300

400

z
[m

]

ProposedGround-truth

00 08 09 10

Fig. 6: KITTI trajectory comparison of the proposed method against the ground-truth trajectory. Two sample trajectories (00
and 08) from training sequences and two test sequence results (09 and 10).

translation and rotation has a convex shape around ground-
truth. This indicates that the tendency of loss supports the
validity of the proposed loss on training.

III. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed model via
qualitative and quantitative comparisons using the publicly
available datasets; KITTI [31], Complex Urban [16], and
Oxford Robotcar [3] datasets.

A. Implementation and Training

The proposed network was implemented using PyTorch
and trained with an NVIDIA GTX 1080ti. We employed the
Adam solver [32] with β1 = 0.9, β2 = 0.99, and wdecay =
10−5. We started the training with an initial learning rate
of 10−4 and controlled it by a step scheduler with a step
size of 20 and γ = 0.5. We set horizontal FOV fh = 360◦

and vertical FOV fv = 26◦ to process raw point clouds to
the vertex map. The corresponding horizontal and vertical
resolutions were δh = 0.5◦ and δv = 0.5◦, and the size of
the input vertex map was 720 × 52.

B. Datasets

To compare the performance of the algorithms in various
environments, we verified the results on KITTI, Complex
Urban, and Oxford Robotcar dataset. As shown in Fig. 7,
each dataset has a different LiDAR configuration and envi-
ronmental characteristics.

KITTI Odometry Benchmark. The KITTI odometry
dataset consists of 10 sequences with LiDAR point clouds
from Velodyne HDL-64E recorded at 10 Hz and associated

Fig. 7: Sample vertex (V) map from each evaluation dataset.

TABLE I: KITTI odometry evaluation.

Training (00-08) Seq. 09 Seq. 10
trel rrel trel rrel trel rrel

Proposed 3.68 0.87 4.87 1.95 5.02 1.83
Zhu et al. 5.72 2.35 8.84 2.92 6.65 3.89

SfMLearner 28.52 4.67 18.77 3.21 14.33 3.30
UnDeepVO 4.54 2.55 7.01 3.61 10.63 4.65

SuMa 3.06 0.89 1.90 0.80 1.80 1.00

TABLE II: Translation trel(%) and rotation rrel(
◦/100m)

RMSE drift on length of 100 m to 800 m are presented. The
RMSE values of the other methods were obtained from [33]
and [9].

a ground-truth pose. Similar to previously reported learning-
based odometry methods [13, 33], we used sequences 00-08
for the training and 09-10 for the test.

Complex Urban Dataset. Due to the high complexity, it is
difficult to guarantee the performance of the existing LiDAR
odometry methods. The training and test sequences both
have various rotation intervals and long path lengths. Unlike
the KITTI dataset, the Complex Urban dataset provides 2D
LiDAR scan data of a push-bloom type. Therefore, we made
a submap with sufficient length (80 m in our work) of
accumulated 2D scans. The Urban 09 sequence was used
for learning, and the Urban 28 sequence with different
driving routes in the same place was used for the test.

Oxford Robotcar Dataset. As in the Complex Urban
dataset, this dataset uses a push-broom style 2D LiDAR and
the submap was generated in a similar fashion. Since the
focus of the Oxford RobotCar dataset is on seasonal diversity,
we used the Long sequences (2015-02-03-08-45-10
and 2015-03-10-14-18-10) as training data and the
other types as test data.

C. Evaluation on the KITTI Dataset

Fig. 6 shows the trajectories from the proposed method on
the KITTI dataset. The figure includes two sequences (00
and 08) together with two test sequences (09 and 10). As
in the figure, our method presents well-estimated trajectories
on both training and test sequences, which have independent
and different environmental characteristics.

Table I contains the details of the results; the average
translation trel(%) and rotation rrel(

◦/100m) RMSE drift
on length of 100 m to 800 m. To verify the performance

331.6 331.8 332 332.2 332.4 332.6 332.8 333 333.2 333.4
x [m]

400

600

800

1000

1200

1400

1600

y
[m

]

+4 .14× 106

103×

1100.0 2200.0 3300.0 4401.0 5501.0
Distance traveled [m]

0
5

10
15
20
25

Tr
an

sl
at

io
n

er
ro

r
[%

]

1100.0 2200.0 3300.0 4401.0 5501.0
Distance traveled [m]

0
5

10
15
20
25
30

Ya
w

er
ro

r
[d

eg
]

331.5 332 332.5 333 333.5

x [m]

400

600

800

1000

1200

1400

y
[m

]
+4 .14 × 10 6

× 10 3

1050.0 2101.0 3151.0 4202.0 5252.0
Distance traveled [m]

0

5

10

15

20

Tr
an

sl
at

io
n

er
ro

r[
%

]

1050 2101 3151 4202 5252
Distance traveled [m]

0
5

10
15
20
25
30

Ya
w

er
ro

r[
de

g]

ICPProposed LeGO-LOAMGround-truth

(a) Urban 09 (Trajectory and Relative Errors) (b) Urban 28 (Trajectory and Relative Errors)

GT

GT

LeGO-LOAM
LeGO-LOAMProposed

Proposed

ICP
ICP

Fig. 8: Results of the Complex Urban dataset. Estimated trajectories and relative pose errors of the proposed method,
point-to-plane ICP, and LeGO-LOAM on (a) Urban 09 (training sequence) and (b) Urban 28 (test sequence). Box plots
represent the error statistics: the median (center line), 25% and 75% quantiles (box), and minimum and maximum errors
(whisker)

of unsupervised learning and training losses, we evaluated
our method against several previously reported unsupervised
learning methods, namely UndeepVO [13], SfMLeaner [12],
and Zhu’s method [33]; the resulting values for these meth-
ods were taken from the result in [33]. We also compared
our method to SuMa [9] which is a recent model-based si-
multaneous localization and mapping (SLAM) method using
LiDAR measurements. Since SuMa used similar point-to-
plane projective loss, the qualitative comparison ensured the
general performance of the proposed method. The values of
SuMa are referenced from frame-to-frame estimation results
of the paper [9]. Compared to other unsupervised learning
methods, our method shows meaningful performance on both
training and test sequences. Although the proposed method is
not superior to SuMa in KITTI dataset, it yields a comparable
performance even when trained in an unsupervised manner.

D. Evaluation with the Complex Urban Dataset

For evaluation within dynamic and realistic urban environ-
ments, we evaluated the proposed method over the Complex
Urban dataset by comparing it against the point-to-plane ICP
(ICP-p2l) and LeGO-LOAM [22]. By doing so, we aimed to
ensure the generality of the proposed method.

It is notable that the Complex Urban dataset has more
challenging environments for LO than KITTI. Thus we
applied transfer learning to secure network generality and
improve learning stability by using the weight of the network
learned by the KITTI dataset as the initial weight. We found
that this strategy significantly improved the training phase
by enabling the learning for the dataset with less diversity
for training.

Fig. 8 shows the learned and test paths for the sequences
of Urban 09 and Urban 28 together with evaluation in

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Frames

0

0.5

1

1.5

T
ra

ns
. E

rr
. [

m
]

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Frames

0

0.02

0.04

R
ot

. E
rr

. [
ra

d] ICP
Proposed

Fig. 9: Detailed RE variation plot compared against ICP. The
proposed method revealed smaller RE over entire mission
time.

terms of Relative Error (RE) [34]. For trajectory alignment,
SE(3) transformation was estimated and applied to the tested
methods. Next to each trajectory is the quantitative result
compared to the ground-truth in terms of relative translation
error (%) and heading error (deg). When computing REs,
subtrajectory segments of tested methods were selected along
with various travel distances. Each subtrajectory was aligned
using the first state, and the error was calculated for all the
subtrajectories.

Although we utilized a similar objective function as in ICP,
the proposed method resulted in a better estimation result
than ICP-p2l. Model-based ICP methods iteratively search
optimal solution between two frames, whereas network-
based methods train the network to find optimal results for
the entire data. Unlike ICP, which easily result in local
minima depending on the environment, the proposed method
shows more general performance improvement. As can be
seen from the comparison of the relative translation and
rotation of Fig. 9, the proposed method also reported better

−1200 −1000−800 −600 −400 −200 0 200 400 600
x [m]

−1000

−800

−600

−400

−200

0

200

400
y

[m
]

−150 −100 −50 0 50 100 150 200 250
x [m]

−50

0

50

100

150

200

250

300

y
[m

] 94.0 188.0 282.0 376.0 470.0
Distance traveled [m]

0
10
20
30
40
50

Tr
an

sl
at

io
n

er
ro

r[
%

]

94.0 188.0 282.0 376.0 470.0
Distance traveled [m]

0
10
20
30
40
50

Ya
w

er
ro

r[
de

g]

(d) 2014-06-23-15-41-25 Evaluation(a) 2015-03-10-14-18-10 (Trajectory Long)

931.0 1862.0 2793.0 3725.0 4656.0
Distance traveled [m]

0
2
4
6
8

10
12

Tr
an

sl
at

io
n

er
ro

r[
%

]

931.0 1862.0 2793.0 3725.0 4656.0
Distance traveled [m]

0
2
4
6
8

10
12
14
16
18

Ya
w

er
ro

r[
de

g]

(b) 2014-06-23-15-41-25 (Trajectory Alternate) (c) 2015-03-10-14-18-10 Evaluation

Stereo VOProposedGround-truth

Fig. 10: Evaluation of the proposed methods via the Oxford RobotCar dataset; (a)-(b) trajectories, (c) relative translation, and
(d) relative heading errors depicted over distance. Each column shows the trajectories and evaluation results with different
types of sequences. (a) Training: 2014-03-10-14-18-10 Long, (b) Testing: 2014-06-23-15-41-25 Alternate.
Also, corresponding relative errors are reported in (c) and (d). Box plots represent the same as in Fig. 8.

TABLE III: Trajectory Errors on Oxford RobotCar dataset

Absolute Trajectory Error (RMSE)
Datetime Type StereoVO [3] Proposed

2014-05-14
-13-50-20 Alternate 37.74 19.73

2014-05-14
-13-59-05

Alternate
Reverse 34.55 22.87

2014-06-23
-15-41-25 Alternate 36.09 12.92

results.
Comparing against LeGO-LOAM, the proposed unsuper-

vised deep LiDAR odometry performed better in the training
sequence and achieved comparable estimation performance
in the test sequence. Excluding the mapping module from
LeGO-LOAM would be the more fair comparison but could
not yield a meaningful estimation thus has been excluded
in the comparison. Note that however, ours produced a
comparable result when compared to LeGO-LOAM with the
mapping module without requiring a ground-truth pose label
during the training phase.

E. Evaluation with the Oxford RobotCar Dataset

We compared our method with the ground-truth trajectory
and stereo visual odometry given in the Oxford RobotCar
dataset. Since all trajectories have different frame rates, we
evaluated each method following the trajectory evaluation
method [34] as in Complex Urban dataset.

Similarly, as in Complex Urban dataset, trajectory estima-
tion and RE plots are presented in Fig. 10. In the case of
the training sequence, the stereo trajectory was not accurate
enough to be used as the baseline and was thus excluded
from the comparison. As can be seen, our methods showed
better performances for all of the sequences with the trained
networks being able to capture the relative motion of test
sets. Table III lists Absolute Trajectory Error (ATE)s over
test sequences. This evaluation quantifies the quality of the
whole trajectory.

F. Uncertainty Visualization

The uncertainty estimation of the proposed method is an
important measure to improve the learning efficiency and to
measure the quality of projected points. Fig. 11 represents

(a) Depth Discontinuity

(b) Moving Objects

Fig. 11: Estimated point uncertainty. Brighter pixels repre-
sent high uncertainty. (a) Point uncertainty on depth disconti-
nuity. Dotted boxes show high uncertainties about the points
of object boundaries which have large depth differences. (b)
Point uncertainty on moving objects. The solid box presents
pixels with high uncertainties about moving objects.

the predicted uncertainties from the proposed network. As
can be seen from the figure, uncertainty is emphasized in
the part where geometric ambiguity occurs. Examples of
regions with high uncertainty include the area where the
distance suddenly changes, the vehicle window area where
LiDAR points become noisy, and moving objects. As can
be seen in Fig. 11(b), moving objects are highlighted with
large uncertainty because the network learned to increase the
association ambiguity during the learning process.

IV. CONCLUSION

In this paper, we demonstrated a learning-based LiDAR
odometry estimation pipeline that is trainable in the unsu-
pervised manner. We showed that the proposed unsupervised
loss could capture the geometric consistency of point clouds.
To the best of our knowledge, ours is the first unsupervised
approach for deep-learning-based LiDAR odometry which
is the extension of our previous approach [35]. In addition,
our method showed prominent performance compared to
other learning-based or model-based methods in various en-
vironments. We also derived training adaptation via transfer
learning in heterogeneous environments.

REFERENCES

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scara-
muzza, J. Neira, I. Reid, and J. J. Leonard, “Past,
present, and future of simultaneous localization and
mapping: Toward the robust-perception age,” IEEE
Trans. Robot., vol. 32, no. 6, pp. 1309–1332, 2016.

[2] J. Serafin and G. Grisetti, “NICP: Dense normal based
point cloud registration,” in Proc. IEEE/RSJ Intl. Conf.
on Intell. Robots and Sys., 2015, pp. 742–749.

[3] W. Maddern, G. Pascoe, C. Linegar, and P. Newman,
“1 year, 1000 km: The Oxford RobotCar dataset,” Intl.
J. of Robot. Research, vol. 36, no. 1, pp. 3–15, 2017.

[4] R. Mur-Artal, J. M. M. Montiel, and J. D. Tar-
dos, “ORB-SLAM: a versatile and accurate monocular
SLAM system,” IEEE Trans. Robot., vol. 31, no. 5, pp.
1147–1163, 2015.

[5] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast
semi-direct monocular visual odometry,” in Proc. IEEE
Intl. Conf. on Robot. and Automat., 2014, pp. 15–22.

[6] J. Engel, V. Koltun, and D. Cremers, “Direct sparse
odometry,” IEEE Trans. Pattern Analysis and Machine
Intell., vol. 40, no. 3, pp. 611–625, 2018.

[7] M. Bosse, R. Zlot, and P. Flick, “Zebedee: Design of
a spring-mounted 3D range sensor with application to
mobile mapping,” IEEE Trans. Robot., vol. 28, no. 5,
pp. 1104–1119, 2012.

[8] J. Zhang and S. Singh, “LOAM: Lidar Odometry and
Mapping in Real-time,” in Proc. Robot.: Science & Sys.
Conf., Berkeley, USA, July 2014.

[9] J. Behley and C. Stachniss, “Efficient Surfel-Based
SLAM using 3D Laser Range Data in Urban En-
vironments,” in Proc. Robot.: Science & Sys. Conf.,
Pittsburgh, Pennsylvania, June 2018.

[10] S. Wang, R. Clark, H. Wen, and N. Trigoni, “DeepVO:
Towards end-to-end visual odometry with deep recur-
rent convolutional neural networks,” in Proc. IEEE Intl.
Conf. on Robot. and Automat., 2017, pp. 2043–2050.

[11] H. Zhou, B. Ummenhofer, and T. Brox, “DeepTAM:
Deep tracking and mapping,” in Proc. European Conf.
on Comput. Vision, 2018, pp. 851–868.

[12] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe,
“Unsupervised learning of depth and ego-motion from
video,” in Proc. IEEE Conf. on Comput. Vision and
Pattern Recog., vol. 2, no. 6, 2017, pp. 1851–1860.

[13] R. Li, S. Wang, Z. Long, and D. Gu, “UnDeepVo:
Monocular visual odometry through unsupervised deep
learning,” in Proc. IEEE Intl. Conf. on Robot. and
Automat., 2018, pp. 7286–7291.

[14] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet:
Deep learning on point sets for 3D classification and
segmentation,” 2017, pp. 652–660.

[15] M. A. U. G. H. Lee, “PointNetVLAD: Deep point cloud
based retrieval for large-scale place recognition,” Proc.
IEEE Conf. on Comput. Vision and Pattern Recog., pp.
4470–4479, 2018.

[16] J. Jeong, Y. Cho, Y.-S. Shin, H. Roh, and A. Kim,

“Complex urban dataset with multi-level sensors from
highly diverse urban environments,” The International
Journal of Robotics Research, vol. 38, no. 6, pp. 642–
657, 2019.

[17] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J.
Davison, and S. Leutenegger, “ElasticFusion: Real-time
dense SLAM and light source estimation,” Intl. J. of
Robot. Research, vol. 35, no. 14, pp. 1697–1716, 2016.

[18] P. J. Besl and N. D. McKay, “A method for registration
of 3-D shapes,” IEEE Trans. Pattern Analysis and
Machine Intell., vol. 14, no. 2, pp. 239–256, 1992.

[19] S. Rusinkiewicz and M. Levoy, “Efficient variants of
the ICP algorithm,” in Proc. IEEE Intl. Conf. on
3D Imaging, Modeling, Processing, Visualization and
Transmission, 2001, pp. 145–152.

[20] A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,”
in Proc. Robot.: Science & Sys. Conf., Seattle, USA,
June 2009.

[21] J. Zhang and S. Singh, “Loam: Lidar odometry and
mapping in real-time.” in Robotics: Science and Sys-
tems, vol. 2, 2014, p. 9.

[22] T. Shan and B. Englot, “Lego-loam: Lightweight and
ground-optimized lidar odometry and mapping on vari-
able terrain,” in Proc. IEEE/RSJ Intl. Conf. on Intell.
Robots and Sys., Oct 2018, pp. 4758–4765.

[23] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen,
“PointCNN: Convolution On X-Transformed Points,” in
Advances in Neural Information Processing Sys. Conf.,
2018, pp. 828–838.

[24] A. Nicolai, R. Skeele, C. Eriksen, and G. A. Hollinger,
“Deep learning for laser based odometry estimation,” in
RSS workshop Limits and Potentials of Deep Learning
in Robotics, 2016.

[25] M. Velas, M. Spanel, M. Hradis, and A. Herout, “CNN
for IMU assisted odometry estimation using velodyne
LiDAR,” in Proc. Intl. Conf. Aut. Rob. Sys. and Comp.,
2018, pp. 71–77.

[26] Q. Li, S. Chen, C. Wang, X. Li, C. Wen, M. Cheng, and
J. Li, “Lo-net: Deep real-time lidar odometry,” in Proc.
IEEE Conf. on Comput. Vision and Pattern Recog., June
2019.

[27] J. Redmon and A. Farhadi, “Yolov3: An incremental
improvement,” arXiv preprint arXiv:1804.02767, 2018.

[28] K. Klasing, D. Althoff, D. Wollherr, and M. Buss,
“Comparison of surface normal estimation methods for
range sensing applications,” in Proc. IEEE Intl. Conf.
on Robot. and Automat., 2009, pp. 1977–1982.

[29] Z. Jia, “Using cross-product matrices to compute the
svd,” Numerical Algorithms, vol. 42, no. 1, pp. 31–61,
May 2006.

[30] A. Kendall and Y. Gal, “What uncertainties do we
need in bayesian deep learning for computer vision?”
in Advances in neural information processing systems,
2017, pp. 5574–5584.

[31] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for
Autonomous Driving? The KITTI Vision Benchmark
Suite,” in Proc. IEEE Conf. on Comput. Vision and

Pattern Recog., 2012.
[32] D. P. Kingma and J. Ba, “Adam: A method for stochas-

tic optimization,” arXiv preprint arXiv:1412.6980,
2014.

[33] A. Z. Zhu, W. Liu, Z. Wang, V. Kumar, and K. Dani-
ilidis, “Robustness meets deep learning: An end-to-end
hybrid pipeline for unsupervised learning of egomo-
tion,” arXiv preprint arXiv:1812.08351, 2018.

[34] Z. Zhang and D. Scaramuzza, “A tutorial on quanti-
tative trajectory evaluation for visual (-inertial) odom-
etry,” in Proc. IEEE/RSJ Intl. Conf. on Intell. Robots
and Sys., 2018, pp. 7244–7251.

[35] Y. Cho, G. Kim, and A. Kim, “Deeplo: Geometry-aware
deep lidar odometry,” arXiv preprint arXiv:1902.10562,
2019.

