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Abstract— Sonar and optical images are widely utilized imag-
ing sensors in underwater research. Despite their popularity,
the optic camera’s limited view and acoustic camera’s high
level noise may hinder their utility in a single-sensor applica-
tion. To alleviate such challenges, complementary exploitation
of the two sensors was introduced and suggested for opti-
acoustic approaches in underwater sensing. However, defining
the features and matching the two different sensor modalities is
challenging. In this paper, we propose to automatically match
the features between the optic image and the acoustic image
by using the opti-acoustic image conversion that is based on a
neural network. The main focus of this paper is to generate the
optic-style image, given an acoustic image via the Convolutional
Neural Network (CNN)-based neural style transfer. In doing
so, we acquired the contour of the object in sonar image with
content feature extraction and an embodied optic image style
with style feature extraction. The generated image has the
content of the sonar image, yet, the style is the optic image.
Finally, we verified the utility of out result by calculating the
cosine similarity and the number of matched features between
two images.

I. INTRODUCTION

An optic camera and sonar are widely applied sensors that
are used in underwater vision. Optic imaging is preferred
in many terrestrial and underwater perception because the
resulting images are the most intuitive vision sensors for
a human. As can be found in the literature, most of the
research in computer vision is developed with optic camera
images. In underwater conditions, however, scattering light
and turbid water disturb the camera when obtaining the
desired images. With its acoustic-based sensing, sonar has
advantages for capturing the underwater environment. Even
under low-visibility water conditions, sonar is capable of
detecting the target object from a longer range.

To complement the limited sensing modality from each
sensor, researchers are constantly attempting to resolve the
problem by investigating the correlation between clear data
and environment. [1], [2], and [3] handled underwater image
dehazing and restoration with optical camera, and [4] and [5]
covered sonar image restoration and saliency extraction. We
focused on multimodal sensor fusion problems, especially
opti-acoustic stereo imaging, which was introduced by [6].
Interrelationship derivation between the optic and acoustic
imaging sensors could resolve shortcomings in the sensing
modality.
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Fig. 1. Summary of CNN-based opti-acoustic image conversion. Before
(left) and after (right) the transference, feature matching results have been
substantially improved.

Since the first discovery of artificial neural networks, the
research area of computer vision has become extremely
broad. Neural style transfer is one area of computer vision
research that has received compliments. As the right side of
Fig. 1 illustrates, the neural style transfer reforms the content
image to the given style by calculating two losses.

We propose a neural network based approach for the opti-
acoustic feature matching problem. Both sensors have its
style; the optic image is vivid and sonar is noisy. Even
if the image captured the same target, the feature points
from each image may be different. The objective of this
paper is to find opti-acoustic correspondence using a neural-
transferred image. We expect the neural style transferring to
boost denoising and vivify sonar image. The following are
presented and discussed in this paper.

• To prevent the noise-to-content conversion in the neural
transferring process, we pre-processed the image so that
the network concentrates only on the content object.

• Inter-transformation between sonar and the optic image
with neural network training was conducted for opti-
acoustic stereo imaging.

• We verified the opti-acoustic correspondence with co-
sine similarity and feature matching.

II. RELATED WORKS

A. Opti-acoustics

The opti-acoustic feature matching and image calibration
was conducted in [6]. In their work, by utilizing the five
known opti-acoustic correspondence in calibration step, they
found the epipolar curve for the acoustic image. With the
epipolar geometry and opti-acoustic correspondence, they
attempted to perform 3D reconstruction. The opti-acoustic
projection model based bundle adjustment was implemented
in [7]. They applied various feature detectors/descriptors,
such as Scale Invariant Feature Transform (SIFT), Binary
Robust Invariant Scalable Keypoints (BRISK), Accelerated-
KAZE (A-KAZE), and Dense Adaptive Self-Correlation
(DASC) for opti-acoustic image matching. Consequentially,
DASC presented the most satisfying opti-acoustic feature
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Fig. 2. Opti-acoustic style transfer algorithm. Original sonar image is processed to an input form. VGG-19 produces feature vectors. Style and content
losses are calculated with feature maps. Finally network submit total loss for generated image.

matching result. However, these opti-acoustic studies assume
that the optic camera and sonar are capturing the same
scene. To apply existing computer vision research to the opti-
acoustic data, automatic feature detection and matching have
to be preceded. As stated in [7], the opti-acoustic feature
matching problem is challenging due to the noise of the sonar
image.

B. Neural Style Transfer

Neural style transfer is a recent arising study in both
computer vision and robotics. While maintaining the image
contents, the style of the image is modified with the charac-
teristic of the input image. The existing neural style transfer
method has two big branches; one is loss minimizing with
pre-trained CNN, and the other is training the style transfer
model with the Generative Adversarial Network (GAN).

In the work by [8], the authors extracted the style feature
from the image with CNN and a gram matrix. The VGG-
19 from [9] was the key network, and the style of the
image was decided with the comparison between the feature
layers. Finally, the CNN-based neural style transfer algorithm
was established in [10]. They merged the style and content
features of the image with an appropriate rate and realized the
style transfer of the image. The style transfer with GAN was
introduced in [11] and [12], which is known as pix2pix and
CycleGAN. They generated realistic images with training
both a descriptor and a generator under the feedback system.
They have generated decent image quality, however, the
GAN-based style transfer requires intuitive image sets that
represent the corresponding scene.

C. Application to Underwater Image

In underwater research, [3] proposed a GAN-based ap-
proach for underwater optic camera image restoration. They
utilized a dataset with 6500 optic images for network training
and produced outstanding results. In the case of sonar,

[5] scored the saliency of the sonar image with CNN to
improve underwater simultaneous localization and mapping
(SLAM) performance. As appear by other studies, previous
network-based underwater research has focused on single-
sensor processing. We will pursue acoustic-to-optic image
conversion with a neural network, which has not previously
been attempted. To utilize GAN, we would have to prepare a
sufficient image dataset in advance. However, the amount of
public opti-acoustic image datasets is not enough to execute
GAN at present. Thus, we opted to develop a CNN-based
opti-acoustic style transfer.

III. METHOD

The proposed method is composed of image pre-
processing, neural feature extraction, and image generation.
In the image pre-processing phase, our intention is to prevent
noise from becoming the main content of the image. Then,
we conduct neural feature extraction with a pre-trained
network. Each style and content feature can be derived from
the layer of the pre-trained CNN network. Lastly, the image
is generated with both style and content loss minimization.
The learning process is divided into two steps, style and
content loss definition, and total loss definition for back
propagation. The overall process is depicted in Fig. 2.

A. Image Pre-processing

Fig. 3 describes a sample raw sonar image in which, the
upper and lower parts depict highly noisy pixels without
any meaningful features. In the first step, we eliminate
meaningless regions in the sonar image to eschew noise-
object transferring. Although automatic region detection is
preferred for the multi-object case, we crop with respect
to the center as only one target exists in our case. In this
pre-processing phase, we crop the image by analyzing the
characteristic of the sonar image.



B. Feature Extraction via CNN

Two methods are dominant in neural network based image
style transfer. One is pre-trained CNN-based neural style
transfer, and the other is style-reformed image generation
with GAN. As pre-trained CNN transfer requires only two
images for image generation, the required time for training
is relatively short. However, GAN-based transfer demands
a large amount of datasets, which affects the learning time.
This need for large dataset may be a limitation for under-
water application; no public sonar image dataset is readily
available, unlike the wide accessibility of optic images (e.g.,
ImageNet or CIFAR-10). Furthermore, the most consider-
able advantage of GAN is an aesthetically refined result,
which does not necessarily infer quantitative improvement
in robot vision applications. Instead of GAN, therefore, we
contributed to improving the accuracy of the existing pre-
trained CNN-based style transfer method.

As implemented in [13], we composed the network with
pre-trained model VGG-19, but reckoned in a different way
for style and content feature, respectively. In the case of the
content feature, semantic information is more important than
the pixel unit information. Thus, we extracted the content
feature Cl in the deepest layer of CNN, which retains only
semantic information. For the style feature Sl, as introduced
in [8], we calculated the correlation between feature map F l

by using the gram matrix (1).
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Gram matrix Gl
ij is defined as the inner product of feature

maps i, j in layer l. The content and style feature that we
obtained is utilized for loss calculation.

Fig. 3. The left two images are raw sonar images captured with DIDSON.
The object is located in the middle of the image, and noise exists at the
top and bottom only. The right two images are zoomed views of noise and
object, respectively.

C. Image Generation with Loss Minimization

With the style and content features introduced above, we
defined two different losses Lcontent and Lstyle in accord
with the concept described in [13]. The first is the style loss
Lstyle; it compares the style feature between the input style
and the generated image. When the style loss is minimized,
the randomly generated image describes the similar style
with the given style. (2) and (3) explain the style loss
fuctions. Gram matrix of input style image Sl and generated
image Gl are the key variables in style loss. Nl is the number
of feature maps, and Ml is a size of feature map in layer l.
We weighted with wl for El, to control the leverage of each
layer.
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The second is a content loss Lcontent that compares the
content feature between the input content and generated
image. We are able to obtain the input content in the
generated image if the content loss is minimized. Cl is a
feature map of the input content image from the layer l of
VGG-19, F l is a feature map of the generated image. We
configured the layer value l as five in our experiment that is
the deepest layer of VGG-19.

Lcontent =
∑
i,j

(F l
ij − Cl

ij)
2 (4)

The object of the entire network is to minimize both the
style and content loss. However, the ratio between the content
and style loss must be controlled as it could result in an
overfitting problem. If one of the losses is dominant, the
other loss will be neglected.

Ltotal = αLstyle + βLcontent (5)

Thus, we defined total loss (5) to control the balance between
style and content loss.

IV. RESULT

To evaluate the proposed method, an opti-acoustic stereo
imaging vehicle is utilized. Using the obtained image, we
infer image registration performance with cosine similarity
and feature matching. The style of the generated image is
similar to the optic camera image while containing the object
captured with sonar.

A. Experimental Setup

Our experiment was conducted in a water tank with an
AUV illustrated in Fig. 4(a). Dual frequency IDentification
SONar (DIDSON) is attached to the front of the vehicle,
and the optic camera is installed on the bottom of the vehicle
facing down. DIDSON generates a 96 × 512-sized gray-scale
sonar image. Simultaneously, the underwater optic camera
captures a 1024 × 1024-sized RGB image. The target object
of our experiment is Fig. 4(b), composed of numbers and



(a) Water tank and AUV (b) Target

Fig. 4. Experiment environment and target for opti-acoustic sensors. For
AUV, DIDSON is linked for the front view, and the optical camera takes
the bottom view.

letters. AUV pass through the water surface, and capture the
target with both DIDSON and optical camera.

B. Neural Style Transfer

(a) Optic image (b) Noise image

Fig. 5. Input images for network, style reference and randomly generated
noise.

Our style reference is an optic image as shown in Fig. 5(a),
acquired with AUV. For image generation, initial image
value is produced as Fig. 5(b). Through the network, we
could generate the result image depicted in Fig. 6(b) and
Fig. 6(d). Since the noise of the sonar image is eliminated,
the visibility of the target is increased.

C. Feature Matching Evaluation

We evaluated our style-transferred image both quantita-
tively and qualitatively. To validate whether the conversion
was successful, cosine similarity calculation was utilized for
a quantitative baseline. Specifically, extracted vectors are
from the layers of VGG-19, and similarity is calculated using
all pixels in the image for global comparison. Fig. 7 is the
comparison result. The cosine similarity ranges from 0 to 1;
the experimental group’s value close to 1 signifies similarity
to the control group.

Our feature matching result is shown in Fig. 8. We utilized
SIFT as a feature detector, and feature matching is conducted
according to Fast Library for Approximate Nearest Neigh-
bors (FLANN) method. Fig. 8(a) and Fig. 8(c) present the
entire matches with the original image. Only five feature
points are matched between the optic and sonar images,
yet, 25 matches occurred in the generated image. After the
feature matching, we eliminated the matching error with
random sample consensus (RANSAC). As we can observe in
Fig. 8(b) and Fig. 8(d), stable feature matching is achieved

(a) (b)

(c) (d)

Fig. 6. (a), (c) are the original sonar images, and (b), (d) are the result
images from the style conversion network. Noise is reduced, and the target
became more vivid.
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Fig. 7. Cosine similarity with optic image. Generated images provide
enough higher value than original sonar images.

after the style transferring. Summary of the data comparison
is interpreted in Table I

TABLE I
COSINE SIMILARITY WITH ORIGINAL OPTIC IMAGE

Image Raw Sonar Styled Sonar
Cosine Similarity 0.277 0.517
Matched feature 6 35
Precise matching 2 25

V. DISCUSSION & CONCLUSION

In this paper, we presented the method to apply neural
style transfer to opti-acoustic image conversion. As expected,
sonar image conversion into an optic camera style was
successful according to both aesthetic and analytic standards.
Although the original sonar image has featureless character-
istics, it is evident that the generated image depicts robust



(a) Raw sonar (b) Best matching in raw sonar
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Fig. 8. Feature matching results with FLANN. Converted image contains more feature points than raw sonar image.

feature extraction. However, two problems were detected in
the style transfer method. As depicted in Fig. 6(d), the upper
part of the image is filled with an acoustic object, although
space is empty in the original image. This complication
occurred due to the noise-to-object transference. We plan to
enhance our method to prevent unreasonable transformations.
Secondly, we need to re-train the network with every new
input optical image. Training does not take a long time as
the style transfer network is not complicated; however, it has
to be improved with other methods.

For future work, we will obtain more opti-acoustic datasets
to generalize our method. With a complex underwater sit-
uation, we will acquire an image that various objects are
gathered in one scene. Neural network based object detection
will be added in the image pre-processing step to eliminate
noise part and crop the object as box form.
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