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Abstract

For the era of autonomous cars, the accurate and reliable positioning of a vehicle is critical. However,

a city is still not easy for them. For example, tall buildings disrupt the GNSS signal. Therefore, it is

necessary for a robot to estimate the position using only the surrounding information obtained from

equipped sensors. However, the appearance of a place is diverse. Day and night are different. Dynamic

objects appear and disappear. A building that existed yesterday could be demolished today. In this

thesis, we explore the intrinsic feature of a place that distinguishes that place from others.

How does a human recognize a place? In the field of urban design, there has been a concept called

isovist. The isovist is an observer’s egocentric visibility and means the openness of a space. The openness

that an observer feels in the space also determines the use of that space. For example, in a square, we

get the feeling that we are open and that it is closed between high-rise buildings. The openness of the

space refers to how robust it is in the presence of dynamic objects and light condition changes.

This thesis proposes a robust robot localization method using a LiDAR. Because light goes straight,

the shape of the surrounding environment obtained from a LiDAR is the robot’s egocentric visible space’s

shape. Using this point cloud, the data-driven three-dimensional (3D) isovist is proposed and employed

for robot localization. That is, in this thesis, robot localization meets 3D isovist. Extensive experiments

are conducted to cover diverse environments and times, and the results—for example, those related to

placeness —might come from the openness.

Keywords Mobile robot, Localization, Light Detection And Ranging (LiDAR), Point cloud, 3D isovist
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Chapter 1. Introduction

1.1 Motivation

The era of self-driving cars is coming. Weimo, a subsidiary of the autonomous drive of the Google

alphabet, has achieved mileage of 10 million miles (16,000,000 km) in November 2018. It is only 15 years

since the Defense Advanced Research Projects Agency (DARPA) held its first autonomous driving car

competition in 2004. The car that ran the longest distance at that time only ran 11.9 kilometers. Now

the car is no longer car. It is an autonomous robot. SLAM technology, which has been studied for the

last 20 years since the seminal works from Smith and Cheeseman [64] and Durrant-Whyte [18], and deep

learning, which has developed explosively since AlexNet [39], 2012, now makes the autonomous vehicles.

The autonomous robot needs sense organs for intelligence navigation. A camera is the most popular

sensor, and Radar and Light Detection and Ranging (LiDAR) are also common in the autonomous

driving. Fig. 1.1 shows examples of autonomous robots equipped with multiple sensors.

Autonomous vehicles or autonomous robots perform missions (e.g., navigation for an autonomous

taxi at urban sites, a robot at rescue sites, and self-exploration) by fusing various sensor information.

Particularly, a mobile robot is required to first know their position accurately in order to perform mission.

This the first essential requirement is called localization. This thesis explores how autonomous robots

perform accurate localization in the city. However, it is not easy for the autonomous robot to operate in

a city. Because of the presence of high-rise buildings (so called urban canyon), the error of the Global

Positioning System (GPS) signal is large. Therefore, it is important to reliably localize by using the

robot’s own sensor rather than GPS.

Camera is commonly used robot localization because a camera is cheaper than other sensors. This

(a) The Segway robotic platform (b) LiDAR sensor system

Figure 1.1: Autonomous robots usually have multimodal sensors such as camera and LiDAR for the

intelligent perception. (a) The Segway robotic platform with multiple sensors (Image courtesy of Nicholas

Carlevaris-Bianco [10]). (b) LiDAR sensor system for the complex urban data set (Image courtesy of

Jinyong Jeong [31].
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type of method is called visual localizatoin [21, 44]. However, an image acquired from a same place could

be visually different as in Fig. 2.6(a), which can occur false localization, because camera is vulnerable to

light condition changes. Therefore, a LiDAR sensor is commonly used to compensate the shortcomings

of the camera. The LiDAR sensor recognizes the light reflected back from the object and calculates the

distance between the object and the robot. Therefore, the robot can accurately capture the shape of the

surrounding scene structure. This has the advantage of being able to capture the canonical features of

the scene without regard to time and season, since it is not affected by light conditions as in Fig. 2.6(b).

However, the fact that a point cloud obtained from a LiDAR is unstructured unlike the image

obtained from the camera makes it difficult to use the LiDAR sensor for robot localization. Unstructured

data means that the shape of the data is not known in advance, unlike an image in which pixels are

arranged. Fig. 1.2 shows the example. The camera produces an image of a fixed shape (i.e., non-

changing), regardless of location. For example, images, the left column of Fig. 1.2 have 1232 by 1616

pixels. However, in the case of piont cloud data, it is hard to predict how many points will be acquired

unlike image. For example, point clouds, the right column of Fig. 1.2 have the different number of points

and their points are distributed in the different range, which is not known in advance. Also, the point

cloud may not be well preserved in downsample because neighbor relationship is not clear unlike pixel

in image. For these characteristics we say the point cloud unstructured unlkie image.

This thesis propose a novel method to summarize the unstructured point cloud for robot localization.

Meanwhile, with the development of simultaneous localization and mapping (SLAM), a large scale of map

(i.e., information about a place in a city-scale) has been constructed easily [31] nowadays. Thus using a

pre-built map, the robot can do better localization [30, 75]. However, in order to make it possible, the

place must be summarized effectively and efficiently. Effectively means that the summarized information

of the place should be sufficiently distinguishable from other places. Efficiently means the summarized

data should be lightweight. This thesis proposes a novel method for robot localization using LiDAR

sensor and LiDAR point cloud map. Our contributions are:

� A novel point cloud descriptor. Conventional methods to describe a point clouds summarize the

statistical properties of the point cloud using histograms (e.g, a histogram of normal vectors of

points) and made a vector of a certain length. A method has been recently proposed for the network

to generate a vector of defined length by directly consume the constant number of points. These

existing methods mainly summarize the point cloud as a 1D vector. Therefore, when searching

for the nearest place from the database, a naive matching method was applied (e.g., Euclidean

norm between two vectors). However, unlike the existing method, we summarize the point cloud

in 2D matrix form and propose a novel matching algorithm. This novel representation preserves

the original shape of the point cloud and thus has a robustness than the other methods.

� A novel nearest point cloud retrieval algorithm. We propose two new retrieval algorithms for our

novel point cloud descriptor. One is suitable for the problem of online place recognition and the

other is for long-term localization. Details are presented in chapters §4 and §5, respectively.

� Viewpoint invarint. A robot sometimes revisits the same place in a way that it has not experienced

before (e.g., reverse revisit). In this case, however, the robot should recognize the place despite

the change in viewpoint. Unlike other methods, we align the viewpoints of two point clouds by

performing coarse yaw registration in the matching process. This makes it possible to perform

robust localization against viewpoint changes.
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� Long-term robustness. Another important requirement for robots is long-term autonomy [41].

However, a robot hardly knows the all appearances (e.g., from day and night) of the place in

advance. The robot should be able to recognize the place robustly over a long-term with only a few

(a) Image (Place 1) (b) Point cloud (Place 1)

(c) Image (Place 2) (d) Point cloud (Place 2)

(e) Image (Place 3) (f) Point cloud (Place 3)

Figure 1.2: An example of point cloud’s unstructuredness. Unlike images that have the same shape

even if they are acquired at different places, the point clouds vary in size and range (and those are not

known in advance).
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experiences (or even a singel experience). The retrieval algorithm proposed with our representation

outperforms existing methods for this long-term localization problem.

1.2 Thesis Overview

In this section, the outline of this thesis is provided.

Chapter 1

In this chapter, we illuminate our two problems to be solved and summarize the contributions of

this thesis in these two problem areas.

Chapter 2

This chapter explains why the two problems we target to solve are important. The first problem

is online place recognition for SLAM. Place recognition (or loop closure detection) is an essential

process for a robot to make a globally consistent map. The second problem is long-term localization.

Apart from the robot that creates the map through the SLAM algorithm, other robots can localize using

that map created by the mapper robot. Therefore, the robot can focus only on localizing and obtain

better localization results with the same computing resources.

Chapter 3

Our main contribution, the invention of Scan Context, and its details are introduced in this chapter.

Scan Context is a novel point cloud descriptor, which is induced from the concept of urban visibility

and 3D Isovist. Therefore we first introduce the concept of isovist, which has been widely used in urban

design. The definition of Scan Context and several interesting characteristics of Scan Context are then

described. Finally, we examine the meaning of Scan Context in both mobile robotics and urban design.

Chapter 4

Our first target problem, online place recognition, is introduced. A novel pipeline using Scan Context

for place recognition is proposed and comparisons with existing histogram-based point cloud descriptors

are provided for various datasets in various environments (e.g., from a campus to a metropolitan).

Chapter 5

Our second target problem, long-term localization, is introduced. Scan Context is reformulated into

the 3-channel normalized data, which is called Scan Context Image. This image-format data is fed to a

convolutional neural network (CNN) and we propose a novel long-term localization pipeline using this

prediction vectors from a CNN.

Chapter 6

The overall conclusion and future works are discussed.
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Chapter 2. Background

2.1 Robot Localization

The word, robot localization, means any algorithm make a robot estimate its positional information,

which is also called simply ‘pose’. The pose can be defined in any mathematical format depending on the

purpose of the application. Global Navigation Satellite System (GNSS) systems, for example, represent

locations in terms of latitude, longitude, and altitude. Also, the position of the robot on the 2D plane

can be expressed as x and y. Localization is the essential task that should be performed first for an

autonomous robot to achieve a mission in next levels such as path planning, navigation, or manipulation.

In the 21st century, GNSS have been supplied to most cars, and GNSS became the most basic and

easy sensor for robot to localize. However, since the GNSS signal is unreliable in a city (e.g., a few or a

few tens of meters error), there have been many studies on robot localization using robot’s own sensors

such as camera of LiDAR.

In this section, first, the concept and several categories of robot localization is described. Our main

target problem is global coarse localization, which is introduced in the following paragraph, among the

several types of localization. The overall taxonomy is illustrated in Fig. 2.1.

Second, in subsection §2.1.2, we explain why we need to solve that problem in terms of SLAM.

Then, in the following subsection §2.1.3, we also explain why robots need global coarse localization to

focus more on localization without mapping.

2.1.1 Taxonomy of Robot Localization

Robot localization refers finding current position information of robot. Depending on how position

information is estimated, robot localization can be divided into two categories; tracking and global

localization.

Tracking literally tracks pose information based on previous information. Tracking can be divided

into two type of methods, one using map [73] and one not using map (usually called odometry). For

odometry category, in recent years, there have been many methods of calculating the relative pose

transformation between two frames using only a single camera [19, 52]; thus this is usually called visual

odometry using mono camera. In recent years, with the development of this visual odometry, a robot has

an error of only a few centimeters while moving a few tens of meters. The more in-depth introduction

of visual odometry is can be found at these papers [20, 60]

Global localization directly estimates a robot pose within a global frame, not the relative trans-

formation. Also, this method sometimes aimes to use only current sensor measurements without using

the previous information. Global localization is required for the following reasons.

1. Drift correction.

As mentioned above, a robot iteratively estimates its position through odometry via calculating

a relative transformation between a current and a previous sensor measurement. However, since

sensors (e.g., camera and LiDAR) of a robot has a natural noise, a small error of relative position

exists and the error is accumulated according to the motion of the robot as in Fig. 2.3(a) and

Fig. 2.3(b). Therefore, as shown in Fig. 2.3(b), even if the robot returns to the same place, there is

6



a difference between the robot’s expected position and its actual position. To reduce this unwanted

error, we need to add constraints between these two poses and perform pose-graph optimization.

This process is called loop closure and is described in more detail in section §2.1.2. When the robot

revisits the place, we call the dirft correction ‘close the loop’ because the optimized trajectory’s

shape forms a loop. However, in order to perform loop closing, the process of loop detection (revisit

detection) should be preceded. Therefore, global localization plays a role of loop detection for driff

correction.

2. Relocalization

Sometimes the robot needs to be globally aware of the position even though it is not a loop (revisit)

condition. For example, tracking sometimes fails. Tracking, which relies on relative information,

may not predict the relative motion correctly if the quality of current or previous information is

not good and this phenomenon affects all subsequent predictions. Therefore, when the tracking

fails, it is necessary to re-estimate the current position globally against the previous positions. This

process is called relocalization and is one of the reasons a robot need global localization.

3. Initialization

Although it is possible to use the coordinate of start point of the robot as the origin, in order

to operate the robot in the real world, it is necessary to know the current position in relation to

existing objects and buildings. In other words, global coordinates are required from the beginning

for robot nagigation or mission. Therefore, global localization is required because the robot needs

to know the position of the global coordinates before tracking.

4. Separation of Mapper and Localizer

Global localization is also necessary for robots that only perform localization. Using SLAM, which

is briefly introduced in the following section §2.1.2, a robot can estimate its pose without prior

knowledge of the environment. However, in order to estimate a precise position and to drive a

Robot Localization

Tracking Global Localization

Coarse 
Localization

Without Map
: Odometry With Map

Metric 
Localization

14 ICRA SVO
15 TRO ORB-SLAM
17 ICRA DeepVO

17 ICRA D. Withers 15 ICCV PoseNet
18 ICRA VLocNet

16 IROS M2DP
18 CVPR PointNetVLAD
18 IROS Scan Context  
 Chapter 3, 4

19 RAL Scan Conext Image
 Chapter 3, 5

Figure 2.1: Taxonomy of robot localization. Depending on whether localization is performed using

previous pose information, it is divided into tracking and global localization.
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• Coarse Localization
• “I am at C4”

• Metric Localization
• “I am at (x = 3.7, y = 2.2, heading(𝜽𝜽)= −𝟒𝟒𝟒𝟒°)”

Now where am I?

A B C D E F

1

2

3

4

5

6

(0, 0)

(6, 0)

(0, 6)

(6, 6)

𝜽𝜽

Figure 2.2: An example of metric localization and coarse localization.

robot in real world (e.g., autonomous vehicle in a city), a robot should use a pre-built map (e.g.,

3D point cloud, but any type of information of scene can be said ‘map’) constructed by another

robot in advance. Using the pre-built map, the robot can localize globally (i.e., direct inference of

current position without tracking). Therefore, it is possible to separate the robot that generates the

map and the robot that performs only the localization. With global localization techniques using

the map, the robot, which has limited computing power, could concentrate only on the localization.

1 and 2 of aforementioned four reasons are needed for SLAM. A formal description of SLAM and

why global localization is important for SLAM is discussed in more detail in section §2.1.2. 3 and 4 are

needed for robot to robustly localize in a real-world and details are given in section §2.1.3.

Global localization is again devided into two subcategories; metric and coarse. Metric global

localization aims to predict a precise (practically under a few centimeter-level) continuous real value

of 3DoF (x, y, and heading in 2D environment) or 6DoF (3 for location and 3 for rotation) state of

robot within a global coordinate. Differently, Coarse global localization provides a rough scope (but

practically precision within a few meters is required) of current location of the robot. The output of

metric localization is in continuous space and the output of coarse localization is discrete. A simple but

effective example is given in Fig. 2.2.

Metric localization is used for AR or VR because it provides centimeter-level precise positioning.

However, since it is more complicated than coarse localization, it is still difficult to perform for a wide

range (i.e., hard to be scalable). For example, in the case of the 7-Scenes RGB-D Dataset [63], which

is widely used for global metric localization researches, the coverage of the motion is just a few square

meters. On the other hand, the size of a city, which is an environment where autonomous robots such

as unmanned vehicles operate, reaches a few square kilometers. For example, a length of robot motion

8



from Oxford RobotCar dataset [47] is nearly over 10 km. Coarse localzation is first required for loop

detection as mentioned already. Also, it is proper for scalable operation of robot.

The overall summarization of the taxonomy of robot localization is visualized in Fig. 2.1. We note

that this thesis’s target problem belongs to coarse global localization.

2.1.2 Problem 1: Place Recognition for SLAM

We again note that the target problem of this thesis is global coarse locazliation and, in the previous

section, we introduced the fact that one of the important roles of global coarse localization is loop closure

detection (or called online place recognition for SLAM). In this section, we explore a necessity of loop

closure, which is roughly mentioned in the previous chapter.

The term, SLAM, stands for Simultaneous Localization And Mapping. SLAM is a method of

estimating a robot pose while simultaneously making a map. If the robot experiences the environment

for the first time, the robot does not have knowledge about the environment. Therefore, it organizes the

The actual trajectory of the robot

start

end

(a) The real robot path.

Trajectory with drift accumulation 
estimated by the robot

Drift occurred

(b) The estimated robot path with drift accumu-

lation from the sensor noise.

Loop Detection 
(or called Place Recognition)

Same place!

(c) Loop closure detection (LCD), or called place

recognition (PR), is necessary to make a global

consistent map.

Optimized Trajectory
Through Loop Closing 

(or called pose-graph optimization)

(d) The globally optimzed poses.

Figure 2.3: Importance of Loop Closure Detection (LCD) and loop closing
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(a) The robot trajectory of the INTEL (In-

terl Research Lab data) overlaid on the build-

ing plan map. Note that the image is from

http://lucacarlone.mit.edu/datasets/

(b) The original trajectory (green) and the optimized trajec-

tory (blue) using Ceres solver [1]

Figure 2.4: An real world example of motion drift and pose optimization

information about the environment using only its own sensors and estimates its position based on this

information (map). Map is quite abstract term and can be understood as an any type of information

about the robot’s surrounding environment. Only a few type of map (e.g., occupancy map, 3D point

cloud or set of images), however, is mainly used. In recent years, with help of the development of deep

learning, a neural network containing knowledge about the environment is considered as a map. This

thesis does not cover the whole SLAM, but only localization, therefore here is a good references to finish

and replace the SLAM description here. A more in-depth history and theory of SLAM are found in these

paper [4, 9, 17] and theses [33, 40, 54, 65, 67].

From the viewpoint of state estimation, SLAM can be conceptually defined as follows.

SLAM = Odometry + Loop Closure

Odometry predicts a relative motion between a previous state and a current motion. This relative

motion is estimated via many sensors, for example, camera (visual odometry), wheel encoder (wheel

odometry), or inertial measurement unit (IMU). However, the error of estimated robot motion is ac-

cumulated like Fig. 2.3(b) since those sensors have intrinsic noise or external noise (e.g., harsh light

condition and rough terrain). Thus, robot need to reduce the unwanted error via graph optimization

via representing discrete robot pose as a node and the connection between nodes as edge. Therefore, in

order to perform the optimization, the connection between the two nodes obtained at different times in

the revisit place should be added as a constraint for the optimization problem. This process is called a

loop closure and the process of determining whether a current place is the revisited place that should be

performed before loop closure optimization is called loop closure detection (Fig. 2.3(c)).

In short, estimation of robot pose and construction of globally consistent map, SLAM, is performed

with two modules; the motion is basically estimated using the odometry, and the accumulated error is

reduced through the loop closure and finally robot can get a global-consistent map. Fig. 2.4 shows a

10



real-world example of Fig. 2.3. As seen in Fig. 2.4(b), we know the motion estimation without loop

closure (pose-graph optimization) is inaccurate.

Therefore, correct loop detection is required for successful pose optimization. The optimization

may perform in the wrong way, which occurs wrong motion estimation or fail if the detected loop is

actually not a loop (i.e., a current place is actually not a revisited place) so that false constraint is

added. Therefore, a robust loop detector should not only have high detection performance but also

minimize the case of misjudgment. Since the many SLAM researches have been mainly used cameras,

many existing loop detectors have also been studied for images. Therefore, robust loop detectors for

LiDAR sensors are rare compared to a camera. The first goal of this thesis is to develop an efficient and

effective loop detector for LiDAR, which will be discussed in more detail in chapters 3 and 4.

2.1.3 Problem 2: Long-term Localization

In this section, we discuss the second key-role of global coarse localization and this is the second

contribution point of this thesis, which will be guided in detail in section §5.

In the previous section §2.1.1, we discussed a robot could localize well and lessen the computing

burden of making map if the pre-built map (i.e., any type of information about the environment) is

available. In addition, coordinates in a global frame are necessary for the robot to interact with other

robots in the real world rather than the self-centered coordinates. Such global coordinates are defined

with respect to the pre-built map. The robot estimates the current global position by comparing the

global map information with the information obtained from its own sensors.

In particular, when the robot visits a place previously experienced and has the map about the

environments, the robot can effectively estimate the global coordinates by using the place information

experienced in the past. Fig. 2.5 is an example of 3D point cloud map from Complex Urban LiDAR

dataset [31].

This task is especially called long-term localization if the time difference between mapping and

(a) Top view of KAIST point cloud map. (b) Near view of a building of a department of Civil and Environ-

mental Engg.

Figure 2.5: Example captures from Complex Urban Dataset [31]. With the advancement of SLAM

technology, it is now easier to get a large scale point cloud map like this, which allows non-mapper

robots to focus on localization.
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localization is large (e.g., day to night, summer to winter) so that environmental conditions are partially

changed (e.g., light condition, color of appearance scene, or structural changes such as foliage falling or

construction of a new building).

In order to localize robots robustly in the outdoor environment, not a static lab-like indoor environ-

ment, it is necessary to develop an method, which is invariant to the environmental changes over time.

Unlike the SLAM technology in the indoor static environment is now commercialized-level and applied

to a cleaner robot, research on the long-term autonomy is now in the beginning stage. SLAM researchers

have also recognized the importance of this topic and have recently been engaged in a vigorous study such

as holding a related workshop at a major robotics conference 1 and releasing long-term open datasets

[10, 47].

This thesis argues that LiDAR is more effective than camera for long-term robot localization problem

and details and related works are introduced in chapter §5.

2.2 LiDAR Localization: Literature Review

Why LiDAR

We said this thesis solves global coarse localization problems such as 1. place recognition for SLAM

and 2. robust long-term localization. Specifically, we propose ways to solve such problems using LiDAR

sensors. LiDAR is one of the most predominant sensors supporting the perception of autonomous robots

as camera. Since LiDAR sensor is used for various applications such as odometry and mapping [80],

SLAM [28], object detection [45], intent prediction [11], and sensor fusion [62, 78], it is considered to be

an essential sensor to be equipped with autonomous vehicles.

In order to solve the two problems we mentioned earlier in section §2.1.2 and section §2.1.3, LiDAR

is more effective than the camera. Fig. 2.6 shows the reason. Camera is vulnerable to light conditions

(Fig. 2.6(a)) and the appearance (i.e., color, texture, or shape such as edges) difference between day

and night is large so that false loop detection may occur. A LiDAR sensor, on the other hand, captures

structural information precisely (within a few centimeters), so measurements from LiDAR is robust to

time changes and proper for both robust place recognition and long-term localization.

Design Criteria for point cloud descriptor

Nevertheless, robust localization methods using LiDAR sensors have not much been studied than

cameras. There are two reasons. First, a normal (3D) LiDAR is expensive than a camera. However,

1https://sites.google.com/view/icra2018ltaws/home

(a) Visual data (b) Structural data

Figure 2.6: Note that the image Fig. 2.6(a) is from Oxford RobotCar dataset [47] and Fig. 2.6(b) is

from PointNetVLAD [70].
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due to the development of technology, LiDAR sensor price is getting lower. The second reason is more

practical. Point cloud data from LiDAR is hundreds of thousands of points per second. Also, point cloud

is an unstructured data; we can not know in advance a space a point cloud will occur, unlike an image,

which has aligned pixels and downsampling to summarize large amounts of data can not guarantee

preserving the geometric shape unlike images. Because of these difficulties, it is hard to extract and

compress features from point clouds effectively than image. Moreover, in the outdoor environment we

target, the LiDAR point cloud is noisy and the point cloud becomes more sparse as the distance from

the robot increases. These facts makes it difficult to capture meaningful features from the point cloud.

Therefore, to overcome these limitations, the following requirements should be met to design a LiDAR

point cloud descriptor.

� Discriminative as well as compact: For fast save and retrieval of places, the summarization of a Li-

DAR point cloud should be compact such as a short length of a vector (e.g., 128- or 256-dimensional

vector) or binary description. Discriminativeness means every place can be well separated without

confusion (This confusion is called perception aliasing). For SLAM, since false loop detection is

critical for robot to estimate its position, this confusion should be avoid. However, because com-

pactness and discriminative are in a trade-off relationship, we may lose some information with

attempting to represent a point cloud with less space. Therefore, it is required to design a discrim-

inative but sufficiently compact descriptor.

� Robust (invariant) to environmental condition changes: A point cloud descriptor should be not

only discriminative but also invariant for measurements taken at the same place on different dates.

This may not be required for online place recognition, but it is a heavily required qualification for

robot robustness in outdoor.

Taxonomy of LiDAR-based coarse localization methods

In this subsection, we provide a taxonomy of existing LiDAR-based coarse localization methods.

The visualization of the taxonomy is given in Fig. 2.7.

First, the way of describing a point cloud can be categorized into two main streams; local description

and global description. The word local and global means:

� Local Description: The point cloud is described by a set of local descriptors; a local descriptor is

normally a feature vector extracted from a part (e.g., a single keypoint [8] or a segment [15, 16, 69])

of the scene.

� Global Description: The point cloud is represented by a single summarization. The single descrip-

tion summarizes the whole point cloud.

Due to the nature of the sparse point clouds obtained from 3D LiDAR in the outdoor urban en-

vironment, local descriptors are susceptible to noise and less discriminative. Therefore, in recent years,

many global descriptors have been developed.

Since global descriptors can summarize a single place as a single descriptor, coarse localization

has been performed by storing whole descriptors in a database for convenience and finding a candidate

nearest (i.e., whose distance is minimum and underneath a certain threshold) to a query. We call this

category pairwise comparison with a databases.

The first contribution of this thesis aims to develop a new point cloud descriptor and matching

scheme belongs to this pairwise comparison family. Unlike conventional methods of this category that
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LiDAR-based 
Global Coarse Localization Methods 

Local Description Global Description

Keypoint-
based

Segment-
based

Pairwise 
Comparison 
with database

Direct 
Inference

1D vector descriptor
with simple distance function

(e.g., Euclidean norm) 

Non-vector format descriptor
with specific distance function

→ Chapter 3, 4

→ Chapter 3, 5

17 ICRA, SegMatch
18 RSS, SegMap
18 IROS, Tinchev et al.

13 ICRA, Bosse
and Zlot

11 SSRR, Muhammad et al.
16 IROS, M2DP
18 CVPR, PointNetVLAD

18 IROS, Scan Context

19 RAL, Scan Context Image

Figure 2.7: Taxonomy of robot localization methods using point cloud from LiDAR sensors.

concentrate on summarizing compactly into a 1D vector and use naive matching (e.g., using Euclidean

norm), we develop a novel descriptor that contains more information, which is not a 1D vector form, and

propose special matching algorithms to enhance both time effieciency and discriminative. The details

are given in chapter §2.1.2.

The second contribution of this thesis belongs to a completely different category, direct inference.

This category literally directly inferences a current place of a robot. That is, it does not need to store

descriptors in the database and not compare the query against the whole database. We make this possible

by changing the formulation of the global coarse localization problem from place retrieval (before) to

place classification (after). With the recent development of deep learning, it became possible to learn

place information and save it in the network. We have knowledge (i.e., weights of the neural network),

not a database. The details are given in chapter §2.1.3.
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Chapter 3. Scan Context: 3D Isovist for Robot Localization

3.1 Isovist

A term, isovist, was originally coined and develped from architecture [6]. This is a theory of visibility

of an observer in a space (i.e., at a location within certain surrounding structures). In urban space

design and landscape analysis researches, it is believed that visibility at a given space can affect the

characteristics or even determine functions of that space. For example, in the middle of a wide square,

an observer’s visibility will be high (or can be said the observer’s visible space is large). On the other

hand, among the tall buildings, the observer would feel closed (that is, the observer’s visible space will

be narrow or small).

In robotics this term, isovist, may be unfamiliar. However, a main goal of this thesis is to combine

the concept of observer visibility, isovist, with a sensor measurements from LiDAR; thus we would like

to say that ‘Robot localization meets 3D Isovist’ and the meaning of this sentence will be clear through

this chapter. This resulted in a more efficient and effective point cloud descriptor than existing ones.

Thus before we introduce our point cloud descriptor, we thought introduction of the concept of isovist

first might be helpful in understanding our intuition.

In this section, we introduce the definition of isovist and then introduce our novel point cloud

descriptor, Scan Context. Finally, we illuminate the meaning of the relationship between isovist and

Scan Context in each domain (i.e., space analysis and robot localization).

3.1.1 Introduction

Definition of Isovist

Benedikt [6] proposed a milestone study about isovist. Isovist is defined as a visible polygon within

a given space. Thus this polygon varies with respect to the observer’s location as Fig. 3.1.

(a) Ivosist 1 (b) Isovist 2

Figure 3.1: These two figures show the different cases of isovist polygon depending on the location of

the robot. A green polygon in each figure is a isovist. In this figure the isovist is 2D, so called 2D isovist,

since we assume that the robot exists in the 2D plane. As depicted, 2D isovist can mathematically be

defined as a set of triangles.
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Figure 3.2: Limitation of 2D isovist. 2D isovist cannot captures a difference of 3D structurs. Site A, B,

and C have buildings of differenct heights, but their 2D isovist is the same.

Isovist have been used in urban design and space analysis since many useful measures can be derived

from this visible polygon, such as area (or volume for 3D case) of the polygon, perimeter, convexity, or

skewness [50].

Limitation of 2D Isovist: Necessity of 3D Isovist

However, our real world is 3D, not 2D, and do not exists in a 2D plane. The last row (bottom)

of Fig. 3.2 shows heatmaps of the area for each environment. 2D isovist is not able to distinguish the

difference of 3D structures as Fig. 3.2.

Therefore, we need to define a 3D isovist that reflects the influence of 3D structures in 3D space.

The underlying concept was early proposed in [6], but it took more time to actually implement it. Yang

et al. [76] proposed a method to define 3D isovist based on Geographic Information System (GIS). They

proposed model-based (using DEM) 3D isovist and showed empirical space analysis results by using

volume as a measure of isovist.
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Figure 3.3: This figure shows an example of isovist polygon of a single line of sight and 3D isovist can

be considered as an integration of this isovist of line of sight. Green polygon is the isovist.

Figure 3.4: Example of 3D isovist on a DEM

3.1.2 Sensor data-driven 3D Isovist

Existing 3D Isovist: Model-based

The example of calculating the 3D isovist on a DEM as proposed in [50, 76] is shown in Fig. 3.4.

Morello and Ratti defined an isovist of a single line of sight as Fig. 3.3 and represent a 3D isovist by

integrating the isovist of each line of sight along omnidirectional sights.

Despite the aforementioned need, the reasons why researchers at urban design and landscape analysis

struggle to study 3D isovist are due to these three reasons itemized as below. Because the existing 3D

isovist is model-based, these reasons are considered limitations of model-based methods.

� Not real. GIS-based definition of isovist only reflects buildings assumed to be voxel-shaped. In

the real world, however, non-building objects such as trees and signs also have an impact on an

observer’s visibility.
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Figure 3.5: Visualization of a LiDAR scan. LiDAR sensor on a car can captures directly visible parts

with any shape and without a prebuilt model. The points of orange color are a indeed reflected from the

surface of the part of surrounding objects (i.e., a tree and a higher part of a building in this figure) and

only sensed by the robot (car).

� Expensive. Prior to the analysis, building a city scale model should be preceded. DEM data can

be obtained from aerial LiDAR, which is expensive to operate.

� Non-dynamic. From the above two reasons, model-based isovist can hardly reflect the dynamicity

of the environment. As time and season change, the amount of tree bushes changes, and buildings

could disappear or be newly made. However, since the cost of constructing the model is high, it

is not easy to update the map frequently and consequently resulted in 3D isovist may be easily

outdated.

Robot’s visibility

On the other hand, a robot equiped with LiDAR sensors can overcome all of the aforementioned

limitations of the model-based isovist for visibility analysis. The robot does not know the actual shape

of the surrounding environment or buildings (e.g., tree and building in Fig. 3.5), but the temporal visible

parts can be captured precisely (e.g., orange points in Fig. 3.5). This is all of the information needed for

visibility analysis, and is more accurate than model-based isovist (i.e., green line in Fig. 3.3).

Sensor data-driven 3D Isovist

Therefore, we now define isovist as a set of points actually observed in the line of sight from a 3D

LiDAR sensor and call it sensor data-driven 3D isovist. 3D isovist is thus defined as a set of points for

each line of sight.

Fig. 3.6 shows the sensor data-driven 3D isovist using a real-world point cloud data, which is captured

from the area of Yeouido, Seoul, South Korea. Fig. 3.7 zooms in for a close-up of the 3D isovist in Fig. 3.6.

18



(a) Sensor data-driven 3D isovist using point cloud data cap-

tured from 3D LiDAR sensors

(b) Top view of the sensor data-driven 3D isovsit

Figure 3.6: Example of sensor data-driven 3D isovist. In Fig. 3.6(b) the shape of the isovist is more

accurate and realistic than model-based methods [50].

Figure 3.7: Advantages of sensor data-driven 3D isovist. We can find the realistic visible volume from

the location is sometimes highly decreased by non-building objects (e.g., tress in this figure) and their

view-limiting shape is unstructured and complex, which is hard for a model to predict.

3D isovist defined using a point cloud data from a LiDAR sensor can captures the surrounding structures

as they are seen.

Scan Context: Preview

Sensor data-driven 3D isovist is, however, complex than the model based 3D isovist with respect to

the mathematical formulation since it has more accurate but complex shape so that hard to define its

polygon. Therefore, to relieve the complexity, we propose a method to summarize the information of a

visible polygon of a line of sight into a 1D vector to relieve instead of defining the geometric shape of a

visible polygon

Our core idea is that ‘information of visible part is indeed important and we do not need an actual
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Figure 3.8: Preview of Scan Context. We encode a complex 3D geometric shape acquired from the

actural LiDAR measuremnts into a 1D vector via leaving only visible part information; that is the

maximum height of points within a discretized bin.

geometrical shape’. Fig. 3.8 impose the core idea. Instead of defining the shape of the visible polygon

(green line), we discretize the sensing range of an a line of sight (a single element is called bin.) and

encoded only the information corresponding to the visible part in each bin. We thought that the key

information of a visible bin is the height of the highest point, which is called Highest View-limiting

Point (HVP).

Thus, we are now able to represent the line of sight isovist as a 1D vector. sensor data-driven 3D

isovist is easily defined because it is just an azimuthal integration version of Fig. 3.8. We will soon see

in the next section that 3D isovist is our novel point cloud descriptor, Scan Context.

3.2 Scan Context (SC): Egocentric Place Descriptor

In this section, we introduce our main contibution, a novel point cloud descriptor called Scan Con-

text. First, the definition of Scan Context is proposed. Then, a few characteristics of this novel repre-

sentation are discussed.

Definition of Scan Context

We define a place descriptor called Scan Context for outdoor place recognition. The key idea of a scan

context is inspired by Shape Context [5] proposed by Belongie et al., which encodes the geometrical shape

of the point cloud around a local keypoint into an image. While their method simply counts the number

of points to summarize the distribution of points, ours differs from theirs in that we use a maximum

height of points in each bin. The reason for using the height is to efficiently summarize the vertical

shape of surrounding structures without requiring heavy computations to analyze the characteristics of

the point cloud. In addition, the maximum height says which part of the surrounding structures is visible
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Figure 3.9: Two-step Scan Context creation. Using the top view of a point cloud from a 3D scan (a),

we partition ground areas into bins, which are split according to both azimuthal (from 0 to 2π within

a LiDAR frame) and radial (from center to maximum sensing range) directions. We refer to the yellow

area as a ring, the cyan area as a sector, and the black-filled area as a bin. Scan context is a matrix

as in (b) that explicitly preserves the absolute geometrical structure of a point cloud. The ring and

sector described in (a) are represented by the same-colored column and row, respectively, in (b). The

representative value extracted from the points located in each bin is used as the corresponding pixel

value of (b). We use the maximum height of points in a bin.

from the sensor. This egocentric visibility has been a well-known concept in the urban design literature

for analyzing an identity of a place [6, 50].
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Similar to shape context [5], we first divide a 3D scan into azimuthal and radial bins in the sensor

coordinate, but in an equally spaced manner as shown in Fig. 3.9(a). The center of a scan acts as a

global keypoint and thus we refer to a scan context as an egocentric place descriptor. Ns and Nr are

the number of sectors and rings, respectively. That is, if we set the maximum sensing range of a LiDAR

sensor as Lmax, the radial gap between rings is Lmax

Nr
and the central angle of a sector is equal to 2π

Ns
.

Therefore, the first process of making a scan context is to partition whole points of a 3D scan into

mutually exclusively separated point clouds as shown in Fig. 3.9(a). Pij is the set of points belonging to

the bin where the ith ring and jth sector overlapped. The symbol [Ns] is equal to {1, 2, ..., Ns−1, Ns}.
Therefore, the partition is mathematically

P =
⋃

i∈[Nr], j∈[Ns]

Pij . (3.1)

Because the point cloud is divided at regular intervals, a bin far from a sensor has a physically wider

area than a near bin. However, both are equally encoded into a single pixel of a scan context. Thus, a

scan context compensates for the insufficient amount of information caused by the sparsity of far points

and treats nearby dynamic objects as sparse noise.

After the point cloud partitioning, a single real value is assigned to each bin by using the point cloud

in that bin:

φ : Pij → R , (3.2)

and we use a maximum height, which is inspired from the urban visibility analysis [6, 50]. Thus, the bin

encoding function is

φ(Pij) = max
p∈Pij

z(p) , (3.3)

where z( · ) is the function that returns a z-coordinate value of a point p. We assign a zero for empty bins.

For example, as seen in Fig. 3.9(b), a blue pixel in the scan context means that the space corresponding

to its bin is either free or not observed due to occlusions.

From the foregoing processes, a scan context I is finally represented as a Nr ×Ns matrix as

I = (aij) ∈ RNr×Ns , aij = φ(Pij) . (3.4)

Resolution of Scan Context

There are three user parameters for Scan Context; the number of sectors (Ns), the number of

rings (Nr), and the maximum sensing range (Lmax). The more subdivided the space (the more finer

resolution), the more precise it is possible to express. Abstraction power and detail preservation are in

trade-off. However, it is not always good to summarize the space in detail. It is likely to be vulnerable

to noise when too fine.

Fig. 3.10(b) displays several Scan Contexts of various resolutions, which start from (Ns, Nr) = (15,

5) and become fine by 2 times. . Here we fixed Lmax to 80 m. We use resolutions (60, 20) and (120, 40)

for application 1 (chapter §4) and application 2 (chapter §5), respectively.

Viewpoint Information in Scan Context

A common global descriptor for a point cloud is designed to be viewpoint invariant to allow robots

to recognize the same location in any direction. However, the point cloud is summarized in viewpoint

invariant, but the viewpoint information itself is lost because existing methods usually use statistical
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Top View

(a) Top view of the point cloud (b) Scan Contexts with different resolutions

Figure 3.10: An example of Scan Context

techniques such as histogram [51, 74]. The details of existing point cloud descriptor are introduced in

section §4.2.

But the Scan Context starts with the opposite question: preserving the original viewpoint informa-

tion. The column order of a Scan Context is the viewpoint. The column of the candidate scan context

may be shifted even in the same place, since a viewpoint of a LiDAR changes for different places (e.g.,

revisit in an opposite direction or rotation at a corner). Fig. 3.11 illustrates such cases. Since a scan con-

text is the representation dependent on the sensor location, the row order is always consistent. However,

the column order could be different if the LiDAR sensor coordinate with respect to the global coordinate

changed.

The two advantages of preserving viewpoint information are:

1. Robust viewpoint invarinat place recognition. Ours shows the improved performance over existing

descriptors, in §4, especially for reverse detection.

2. Preservation of local geometry. The local geometry corresponds to a local patch in a Scan Context

(Scan Context is 2D matrix so we can consider it as an image). This consistency of local geometry

is suitable for CNN-based networks to learn patterns. Existing descriptors lose the local geometry

entirely since they summarize information statistically or consume points directly to learn a pattern
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(b) The detected scan context (2345th scan, KITTI00)

Figure 3.11: Example of scan contexts from the same place with time interval. The change of the sensor

viewpoint at the revisit causes column shifts of the scan context as in (a). However, the two matrices

contain similar shapes and show the same row order.

of the geometry of an entire point cloud in an end-to-end manner, which is not suitable for place

learning because a robot may not visit the same place a few hundred or thousand times for learning.

Scan Context and 3D Isovist: Summary

We have examined how a novel point cloud descriptor, Scan Context, have emerged from the fol-

lowing question: How can we effectively represent the sensor data-driven 3D isovist?

We will show in §4 and §5 that this descriptor effectively summarizes a place and shows good

performance in robot localization for both online place recognition and long-term localization.

That is, 3D isovist was originally a concept defined in urban analysis, but we can say that now 3D

isovist can be used for robot localization. Therefore, we want to conclude this chapter by summarizing

the relationship between Scan Context and 3D isovist as follows.

� For space analysis: Scan Context is data-driven 3D Isovist. Scan Context is the effective and

efficient representation of 3D Isovist polygon.

� For mobile robotics: Scan Context is a visiblity-based place fingerprint.
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Chapter 4. Application 1: Online Place Recognition

Compared to diverse feature detectors and descriptors used for visual scenes, describing a place using

structural information is relatively less reported. Recent advances in SLAM provides dense 3D maps

of the environment and the localization is proposed by diverse sensors. Toward the global localization

based on the structural information, we propose Scan Context, a non-histogram-based global descriptor

from 3D LiDAR scans. Unlike previously reported methods, the proposed approach directly records a

3D structure of a visible space from a sensor and does not rely on a histogram or on prior training.

In addition, this approach proposes the use of a similarity score to calculate the distance between two

scan contexts and also a two-phase search algorithm to efficiently detect a loop. Scan context and

its search algorithm make loop-detection invariant to LiDAR viewpoint changes so that loops can be

detected in places such as reverse revisit and corner. Scan context performance has been evaluated via

various benchmark datasets of 3D LiDAR scans, and the proposed method shows a sufficiently improved

performance.

4.1 Introduction

In many robotics applications, place recognition is the important problem. For SLAM, in particular,

this recognition provides candidates for loop-closure, which is essential for correcting drift error and

building a globally consistent map [9]. While the loop-closure is critical for robot navigation, wrong

registration can be catastrophic and careful registration is required. Visual recognition is popular together

with the widespread use of camera sensors, however, it is inherently difficult due to illumination variance

and short-term (e.g., moving objects) or long-term (e.g., seasons) changes. Similar environments may

occur at different locations often causing perception aliasing. Therefore, recent literature has focused on

robust place recognition by examining representation [25] and resilient back-end [42].

Unlike these visual sensors, LiDARs have recently garnered attention due to their strong invariance

to perceptual variance. In the early days, conventional local keypoint descriptors [5, 32, 58, 59], which

were originally designed for the 3D model in computer vision, have been used for place recognition in spite

of their vulnerability to noise. LiDAR-based methods for place recognition have been widely proposed in

robotics literature [27, 29, 66]. These works focus on developing descriptors from structural information

(e.g., point clouds) in both local [66] and global manners [27].

There are two issues that the existing LiDAR-based place recognition methods have been trying to

overcome. First, the descriptor is required to achieve rotational invariance regardless of the viewpoint

changes. Second, noise handling is the another topic for these spatial descriptors because the resolution of

a point cloud varies with distance and normals are noisy. The existing methods mainly use the histogram

[29, 51, 74] to address the two aforementioned issues. However, since the histogram method only provides

a stochastic index of the scene, describing the detailed structure of the scene is not straightforward. This

limitation makes the descriptor less discernible for place recognition problem, causing potential false

positives.

In this chapter we present Scan Context, a novel spatial descriptor with a matching algorithm,

specifically targeting outdoor place recognition using a single 3D scan. Our representation encodes a

whole point cloud in a 3D scan into a matrix (Fig. 3.9). The proposed representation describes egocentric
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(of a single scan)
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places
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Candidate Scan Contexts 
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2-2. Pairwise Similarity Score

Loop detection

2. Search

Figure 4.1: Algorithm overview. First, a point cloud in a single 3D scan is encoded into scan context.

Then, Nr (the number of rings) dimensional vector is encoded from the scan context and is used for

retrieving the nearest candidates as well as the construction of the KD tree. Finally, the retrieved

candidates are compared to the query scan context. The candidate that satisfies the acceptance threshold

and is closest to the query is considered the loop.

2.5D information. Contribution points of the proposed method are:

� Efficient bin encoding function. Unlike existing point cloud descriptors [5, 27], the proposed method

needs not count the number of points in a bin, instead it proposes a more efficient bin encoding

function for place recognition. This encoding presents invariance to density and normals of a point

cloud.

� Preservation of internal structure of a point cloud. As shown in Fig. 3.9, each element value of a

matrix is determined by only the point cloud belonging to the bin. Thus, unlike [29], which depicts

the relative geometry of points as a histogram and loses points’ absolute location information, our

method preserves the absolute internal structure of a point cloud by intentionally avoiding using

a histogram. This improves the discriminative capability and also enables viewpoint alignment of

a query scan to a candidate scan (in our experiments, 6◦ azimuth resolution) while a distance is

calculated. Therefore, detecting a reverse direction loop is also possible by using scan context.

� Effective two-phase matching algorithm. To achieve a feasible search time, we provide a rotational

invariant subdescriptor for first nearest neighbor search and combine it with pairwise similarity

scoring hierarchically, thus avoid searching all databases for loop-detection.

� Thorough validation against other state-of-the-art spatial descriptors. In the comparison to other

existing global point cloud descriptors, such as M2DP [66], Ensemble of Shape Functions (ESF)

[74], and Z-projection [51], the proposed approach presents a substantial improvement.

4.2 Related Work

Place recognition methods for mobile robots can be categorized into vision-based and LiDAR-based

methods. Visual methods have been commonly used for place recognition in SLAM literatures [2, 14, 22].

FAB-MAP [14] increased robustness with the probabilistic approach by learning a generative model for

the bag of visual words. However, visual representation has limitations such as vulnerability to light
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condition change [71]. Several methods have been proposed to overcome these issues. SeqSLAM [48]

proposed the route-based approach and showed far improved performance than FAB-MAP. SRAL [25]

fused several different representation such as color, GIST [68], and HOG [53] for long-term visual place

recognition.

LiDAR presents strong robustness to these perceptual changes described above. LiDAR-based meth-

ods are further catagorized into local and global descriptors. Local descriptors, such as PFH [58], SHOT

[59], shape context [5], or spin image [32], first find a keypoint, separate nearby points into bins, and

encode a pattern of surrounding bins into a histogram. Steder et al. proposed the place recognition

method [66] using point features and the gestalt descriptor [7] in bag of words manner.

These keypoint descriptors, however, revealed limitations since they were originally devised for 3D

model part matching not for place recognition. For example, the density of a point cloud in a 3D scan

(e.g., from VLP-16) varies with respect to the distance from a sensor, unlike the 3D model. Furthermore,

normals of points are noisier than the model due to unstructured objects (e.g., trees) in the real world.

Hence, local methods usually require normals of keypoints and thus are less suitable for place recognition

in outdoor.

Global descriptors do not include the keypoint detecting phase. GLARE [29] and its variations

[34, 57] encoded the geometric relationship between points into a histogram in lieu of searching for the

keypoint and extracting the descriptor. ESF [74] used concatenation of histograms made from shape

functions. Muhammad and Lacroix proposed Z-projection [51], which is a histogram of normal vectors,

and a double threshold scheme with two distance functions. He et al. proposed M2DP [27], which

projects a whole 3D point cloud of a scan to multiple 2D planes and extracts a 192 dimensional compact

global representation. M2DP showed higher performance than the existing point cloud descriptors and

robustness against noise and resolution changes. As introduced in this paragraph, global descriptors have

typically used histograms. Recently, SegMatch [15] introduced a segment-based matching algorithm.

This is a high-level perception but requires a training step, and points are needed to be represented in

a global reference frame.

Meanwhile, Kim et al. proposed a map representation method [38] that captures both elevation and

occupancy information within a grid map for robust localization.

In this chapter, we propose a novel place descriptor called Scan Context that encodes a point cloud

of a 3D scan into a matrix. The scan context can be considered as an extension of the Shape Context

[5] for place recognition targeting 3D LiDAR scan data. In detail, scan context has three components:

the representation that preserves absolute location information of a point cloud in each bin, efficient bin

encoding function, and two-step search algorithm.

4.3 Scan Context for Place Recognition

In this section, we describe scan context creation given a point cloud from a 3D scan and pro-

pose a measure that calculates the distance between two scan contexts. Next, the two-step search

process is introduced. The overall pipeline of place recognition using scan context is depicted in

Fig. 4.1. The Scan Context creation and validation can also be found in a video (YouTube link,

https://youtu.be/ etNafgQXoY)

27

https://youtu.be/_etNafgQXoY
https://youtu.be/_etNafgQXoY


2345 th Scan Context

10 20 30 40 50 60
sector

5
10
15
20

rin
g

3280 th Scan Context

10 20 30 40 50 60
sector

5
10
15
20

rin
g

Shifted 3280 th Scan Context (when best fit)

10 20 30 40 50 60
sector

5
10
15
20

rin
g

eq 3.4

eq 3.4

Loop 
Detection 

D
at

ab
as

e
Q

ue
ry

coarse yaw registration 
(eq 4.2, 4.3)

Column Shift
(eq 4.1)

Figure 4.2: Example captures from Complex Urban Dataset [31]. With the advancement of SLAM

technology, it is now easier to get a large scale point cloud map like this, which allows non-mapper

robots to focus on localization.

4.3.1 Similarity Score between Scan Contexts

Given a scan context pair, we then need a distance measure for the similarity of two places. Iq and

Ic are scan contexts acquired from a query point cloud and a candidate point cloud, respectively. They

are compared in a columnwise manner. That is, the distance is the sum of distances between columns at

a same index. A cosine distance is used to compute a distance between two column vectors at the same

index, cqj and ccj . In addition, we divide the summation by the number of columns Ns for normalization.

Therefore, the distance function is

d(Iq, Ic) =
1

Ns

Ns∑
j=1

(
1−

cqj · c
c
j

‖cqj‖‖ccj‖

)
. (4.1)

The column-wise comparison is particularly effective for dynamic objects by considering the con-

sensus of throughout sectors. However, the column of the candidate scan context may be shifted even

in the same place, since a viewpoint of a LiDAR changes for different places (e.g., revisit in an opposite

direction or corner). Fig. 3.11 illustrates such cases. Since a scan context is the representation dependent

on the sensor location, the row order is always consistent. However, the column order could be different

if the LiDAR sensor coordinate with respect to the global coordinate changed.

To alleviate this problem, we calculate distances with all possible column-shifted scan contexts and

find the minimum distance. Icn is a scan context whose n columns are shifted from the original one, Ic.

This is the same task as roughly aligning two point clouds for yaw rotation at 2π
Ns

resolution. Then we
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decide that the number of column shift for the best alignment (4.3) and the distance (4.2) at that time:

D(Iq, Ic) = min
n∈[Ns]

d(Iq, Icn) , (4.2)

n∗ = argmin
n∈[Ns]

d(Iq, Icn) . (4.3)

Note that this additional shift information may serve as a good initial value for further localization

refinement such as Iterated Closest Point (ICP), as shown in Section 4.4.3.

For robust recognition over translation, we leverage scan context augmentation through root shifting.

By doing so, acquiring various scan contexts from the raw scan under a slight motion perturbance becomes

feasible. A single scan context may be sensitive to the center location of a scan under translational motion

during revisit. For example, the row order of a scan context may not be preserved when revisiting the

same place in a different lane. To overcome this situation, we translate a raw point cloud into Ntrans

neighbors (Ntrans = 8 used in the paper) depending on the lane level interval and store scan contexts

obtained from these root-shifted point clouds together. We assumed that a similar point cloud is obtained

even at the actual moved location, which is valid except for a few cases such as an intersection access

point where a new space suddenly appears.

4.3.2 Two-phase Search Algorithm

Three main streams are typical when searching in the context of place recognition: pairwise similarity

scoring, nearest neighbor search, and sparse optimization [79]. Our search algorithm fuses both pairwise

scoring and nearest search hierarchically to achieve a reasonable searching time.

Since our distance calculation in (4.2) is heavier than other global descriptors such as [27, 51],

we provide a two-phase hierarchical search algorithm via introducing ring key. Ring key is a rotation-

invariant descriptor, which is extracted from a scan context. Each row of a scan context, r, is encoded

into a single real value via ring encoding function ψ. The first element of the vector k is from the nearest

circle from a sensor, and following elements are from the next rings in order as illustrated in Fig. 4.3.

Therefore, the ring key becomes a Nr-dimensional vector as (4.4):

k = (ψ(r1), ..., ψ(rNr
)), where ψ : ri → R . (4.4)

The ring encoding function ψ we use is the occupancy ratio of a ring using L0 norm:

ψ(ri) =
‖ri‖0
Ns

. (4.5)

Since the occupancy ratio is independent of the viewpoint, the ring key achieves rotation invariance.

Although being less informative than scan context, ring key enables fast search for finding possible

candidates for loop. The vector k is used as a key to construct a KD tree. At the same time, the ring

key of the query is used to find similar keys and their corresponding scan indexes. The number of top

similar keys that will be retrieved is determined by a user. These constant number of candidates’ scan

contexts are compared against the query scan context by using distance (4.2). The closest candidate to

the query satisfying an acceptance threshold is selected as the revisited place:

c∗ = argmin
ck∈C

D(Iq, Ick), s.t D < τ , (4.6)

where C is a set of indexes of candidates extracted from KD tree and τ is a given acceptance threshold.

c∗ is the index of the place determined to be a loop.
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Figure 4.3: The ring key generation for the fast search.

4.4 Experimental Evaluation

In this section, our representation and algorithm are evaluated over various datasets and against

other state-of-the-art algorithms. Since scan context is the global descriptor, the performance of our

representation is compared to three other global representations using a 3D point cloud: M2DP [27],

Z-projection [51], and ESF [74]. We use ESF in the Point Cloud Library (PCL) implemented in C++,

Matlab codes of M2DP on the web1 from the authors He et al., and implement Z-projection on Matlab

ourselves. All experiments are carried out on the same system with an Intel i7-6700 CPU at 3.40GHz

and 16GB memory.

4.4.1 Dataset and Experimental Settings

We use the KITTI dataset2 [24], the NCLT dataset3 [10], and the Complex Urban LiDAR dataset4

[31] for the validation of our method. These three datasets are selected considering diversity, such as the

type of the 3D LiDAR sensor (e.g., the number of rays, sensor mount types such as surround and tilted)

and the type of loops (e.g., occurred at the same direction or the opposite direction called reverse loop).

Characteristics of each dataset are summarized in Table 4.1. The term node means a single sampled

place.

1https://github.com/LiHeUA/M2DP
2http://www.cvlibs.net/datasets/kitti/eval odometry.php
3http://robots.engin.umich.edu/nclt/
4http://irap.kaist.ac.kr/dataset/
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Figure 4.4: Selected datasets for the evaluation

KITTI dataset

Among the 11 sequences having the ground truth of pose (from 00 to 10), the top four sequences

whose the number of loop occurrences is highest are selected: 00, 02, 05, and 08. The sequence 08 has

only reverse loops, and others have loop events with the same direction. The scans of the KITTI dataset

had been obtained from the 64-ray LiDAR (Velodyne HDL-64E) located in the center of the car. Since

the KITTI dataset provides scans with indexes, we use each bin file as a node directly.

NCLT dataset

The NCLT dataset provides long-term measurements of different days along similar routes. Scans of

the NCLT dataset were obtained from the 32-ray LiDAR (Velodyne HDL-32E) attached to a segway mobile

platform. Four sequences are selected considering the number of loop occurrences and seasonal diversity.

In this experiment, the scans are sampled at equidistant (2 m) intervals, and only those sampled scans

are used as nodes for convenience.

Complex Urban LiDAR dataset

The Complex Urban LiDAR dataset includes various complex urban environments from residential to

metropolitan areas. Four sequences are selected considering the complexity and wide road rate provided

by [31]. Among three sub-routes in the sequence 04, 04 0 and 04 1 are used in this experiment. The

scans are sampled at 3 m intervals for convenience. The interesting fact is that this dataset uses two

tilted LiDARs (Velodyne VLP-16 PUCK) for urban mapping. Thus, a single scan of this dataset is

able to measure higher parts of structures but does not have a 360◦ surround view. To include more

information in all directions, we merge the point clouds from both left and right tilted LiDARs and use

them as a single scan to create a scan context.

Table 4.1: Selected dataset lists used in validation
KITTI NCLT Complex Urban LiDAR

Sequence Index 00 02 05 08 20120526 20120820 20120928 20130405 00 01 02 04

Total Length (m) 3714 4268 2223 3225 6345 6018 5579 4530 12020 11830 3020 6542

# of Nodes 4541 4661 2761 4071 3164 3001 2781 2259 3630 3266 862 2140

# of True Loops 790 309 493 332 810 526 635 275 361 383 125 150

Route Dir. on revisit Same Same Same Reverse Both Both Both Both Same Same Both Same
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If a ground truth pose distance between the query and the matched node is less than 4 m, the

detection is considered as true positive. In total 50 previously adjacent nodes are excluded from the

search. The experiments for scan context are conducted with 10 candidates and 50 candidates from the

KD tree, thus each method is called scan context-10 and scan context-50, respectively. Unlike the

scan context, which only compares with a constant number of candidates extracted from the KD tree,

other methods (M2DP, ESF, and Z-projection) compare the query description to all in the database.

In this chapter, we set parameters of scan context as Ns = 60, Nr = 20, and Lmax = 80 m. That is,

each sector has a 6◦ resolution and each ring has a 4 m gap. The number of bins of Z-projection is set

as 100. We use the default parameters of the available codes for M2DP and ESF. For the computation

efficiency, we downsample point cloud with 0.6 m3 grid for both scan context and M2DP, since He et al.

[27] reported M2DP is robust to downsampling, whereas Z-projection and ESF use an original point

cloud without downsampling because they are vulnerable to low density. We change only an acceptance

threshold in the experiments.

4.4.2 Precision Recall Evaluation
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(b) KITTI 02 (same)
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(c) KITTI 05 (same)
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(d) KITTI 08 (reverse)
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(e) NCLT 2012-05-26 (both)
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(f) NCLT 2012-08-20 (both)
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(g) NCLT 2012-09-28 (both)
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(h) NCLT 2013-04-05 (both)
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(i) Complex Urban 00 (same)
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(j) Complex Urban 01 (same)
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(k) Complex Urban 02 (both)
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(l) Complex Urban 04 (same)

Figure 4.5: Precision-recall curves for the evaluation datasets. The route direction during the revisit is

shown in parentheses.
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Figure 4.6: A challenging example captured from Complex Urban LiDAR dataset sequence 02. The

road is so narrow in all directions that the amount of available information is too small.

The performance of Scan Context is analyzed using the precision-recall curve as in Fig. 4.5. Precision

and recall are defined as:

Precision =
True Positive

True Positive + False Positive
(4.7)

Recall =
True Positive

True Positive + False Negative
(4.8)

The histogram-based approaches, ESF and Z-projection, reported poor performances on all datasets.

These methods rely on the histogram and distinguish places only when the structure of the visible

space is substantially different. Unlike these histogram based methods, ours presented the meaningful

performance for the entire data sequences. Overall, scan context-50 always reveals better performance

than scan context-10. The performance of scan context depends on the number of candidates from

the KD tree. Since ring key is less informative than scan context, inspecting a small number (e.g., 10 of

more than 3000 nodes) of candidates is vulnerable if there are many similar structures.

The proposed method outperformed other approaches when applied to the outdoor urban dataset.

This is due to the fact the motivation for using the vertical height is from urban analysis. However,

the performance is limited when applied to an indoor environment where variation in vertical height is

less significant. When applied to the NCLT dataset, the scan context presented low performance both for

recall and precision (left part of each graph) because the trajectory of the NCLT dataset contains narrow

indoor environments where an only small area is available.

Evaluating with the Complex Urban LiDAR dataset, all methods show poorer performance than at

the KITTI dataset. In particular, Urban 02 provides the most challenging case for all methods since this

sequence has narrow roads and repeated structures with similar height and rectangle shapes5 compared

to KITTI. The example of scan context from this challenging Urban 02 is given in Fig. 4.6. Despite some

level of performance drop is reported in this challenging dataset, the proposed method still outperformed

other existing methods.

The proposed descriptor presented a strong rotation-invariance even for a reversed revisit by us-

ing view alignment based matching. For example, M2DP failed to detect a reverse loop. Among the

datasets, KITTI 08 has only reverse loops and the proposed method substantially outperformed others.

This phenomenon is also observed in NCLT sequences having partial reverse loops. Therefore, at NCLT

sequences, M2DP reports high precision at the very low recalls because the forward loops are detected

correctly. However, since reverse loops are missed, the slope of the curve rapidly decreases.

5http://irap.kaist.ac.kr/dataset/webgl/urban02/urban02 sick.html
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4.4.3 Localization Accuracy

The proposed method can also be used when providing robust initial estimate for other localization

approaches such as ICP. We conducted the experiment using KITTI 08 having reverse loops. ICP is

performed point-to-point without downsampling. The example of ICP results with and without initial-

ization are depicted in Fig. 4.8. For this sequence, we further validate the improvement in terms of both

computation time and root mean square error (RMSE). Fig. 4.7 shows the improved performance with

the initial yaw rotation estimates using (4.3).

4.4.4 Computational Complexity

Table 4.2: Average time costs on KITTI00.
Calculating Descriptor (s) Searching Loop (s)

Scan context-10 0.1291 0.0807

Scan context-50 0.1291 0.3331

M2DP 0.0218 0.0032

Z-projection 0.0472 0.0035

ESF 0.0635 0.0043

The average computation times evaluated on KITTI 00 are given in Table 4.2. Point cloud down-

sampling with a 0.6 m3 grid is used for all methods. In these experiments, the scan context creation

takes longer because we employ scan context augmentation, which is non-mandatory. Thus, the time

required to create a single scan context (0.0143 s, except for scan context augmentation) is shorter than

it is with the other methods. The search time of the scan context includes both creation of the KD

tree and computation of the distance. Scan context may require a longer search time than other global

descriptors, but in a reasonable bound (2-5 Hz on Matlab).

4.5 Conclusion

In this chapter, we presented a spatial descriptor, Scan Context, summarizing a place as a matrix

that explicitly describes the 2.5D structural information of an egocentric environment. Compared to

existing global descriptors using a point cloud, scan context showed higher loop-detection performance

across various datasets.
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Figure 4.7: Computation time and RMSE with and without initial values. The x-axis represents the

index of real loop events of KITTI 08. Blue and red indicate available and unavailable initial guesses,

respectively.
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(d) Registration with Scan Context

Figure 4.8: An example of point-to-point ICP results from KITTI 08. The query and the detected

point clouds are from the 1785th and 109th scans, respectively. The LiDAR sensor frame represents the

coordinates of the point clouds. Scoring the similarity between two scan contexts provides a coarse yaw

rotation, which serves as an initial estimate to guide finer localization (i.e., ICP). In the case of this

reverse loop, registration easily fails without such an initial estimate. By contrast, even this kind of

unstructured environment can be registered with the use of an initial estimate obtained from the scan

context.

In future work, we plan to extend scan context by introducing additional layers. That is, other bin

encoding functions (e.g., a bin’s semantic information) can be used to improve performance, even for

datasets with highly repetitive structures such as the Complex Urban LiDAR dataset.
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Chapter 5. Application 2: Long-term Localization

In this paper, we present a long-term localization method that effectively exploits the structural

information of an environment via an image format. The proposed method presents a robust year-

round localization performance even when learned in just a single day. The proposed localizer learns

a point cloud descriptor, named Scan Context Image (SCI), and performs robot localization on a grid

map by formulating the place recognition problem as place classification using a CNN. Our method is

faster and more scalable than existing methods proposed for place recognition (e.g., [27, 70]) because it

avoids a pairwise comparison between a query and scans in a database. In addition, we provide thorough

validations using publicly available long-term datasets [10, 47] and show that the SCI localization attains

consistent performance over a year and outperforms existing methods.

5.1 Introduction

Localization in a coarse [23] or fine manner [36] is one of the most necessary and basic abilities of a

mobile robot. Recently, focus has moved to long-term autonomy (LTA) [61] in order to operate in a real

outdoor environment beyond a lab-level static and controlled environment. LTA is particularly important

for localization because the appearance of an environment changes over time (e.g., light condition or

occlusion), potentially resulting in robot localization failure. Although many methods [55, 61] have

been proposed, few agree on a complete visual-based solution to overcome this problem. To accomplish

the LTA in changing environments, many approaches [12] have tried to take multi-experiences into a

localization framework. These approaches revealed inherent drawbacks because they need to capture

various conditions for the same place a priori to increase the size of the database with the number of

experiences.

Contrast to visual appearance, the physical structure of a place rarely changes over time. Hence,
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Figure 5.1: In this paper, we describe the concept of our localization method that takes only one day

for a robot to learn and has consistent performance for over one year. In defining the existence of an

unlearned place (i.e., an area the robot has not visited before), the algorithm we employ is capable of

handling unseen places, which appear during long-term navigation.
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Figure 5.2: Overall pipeline of the SCI localization and performance evaluation.

leveraging structural information that is perceptible within a place has benefits for long-term localization

[77] than methods based on appearance only. In that sense, a single time observation using LiDAR could

represent a canonical characteristic of a place, eliminating the need for multiple experiences for robust

localization. In this line of research, a handcrafted descriptor-based [27, 37] and learning-based [16, 70]

method for place recognition over a point cloud has been widely proposed. However, these studies hardly

captured the long-term localization requirements, including a slow but massive structural variance (e.g.,

construction and demolition) and unexpected viewpoint from the road topology change.

Many LiDAR-based, global, coarse localization methods have focused on making a robust descriptor

with a strong capability to discriminate between places. The current research on descriptors can be

divided into non-learning and learning-based.

Non-learning based Descriptors: M2DP [27] is a handcrafted descriptor; it projects a point

cloud into multiple planes, whose normal directions are manually determined. M2DP showed that, unlike

previously proposed methods such as histogram-based [74], it can effectively perform place recognition

even in an outdoor context with a noisy point cloud. Inspired by the concept of 3D isovists [6] used in

urban design, Scan Context (SC) [37] has shown that extracting only the highest points of a visible point

cloud outperforms others including M2DP. Recently, a study on using intensity instead of structural

information [13] was released.

Learning-based Descriptors: Recently, Uy and Lee proposed a network called PointNetVLAD

[70], which combined PointNet [56] and NetVLAD [3] to generate a point cloud descriptor with achieving

permutation invariance. They validated the network provided enough generality; that is, the network

taught with the Oxford RobotCar [47] dataset works well for scans obtained by other robots in different
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environments. Unlike PointNetVLAD’s borrowing metric learning, SegMap [16] brought an encoder-

decoder system to make a descriptor into its SLAM framework so as to enable both efficient reconstruction

and robust loop-closure detection.

Although many methods have been proposed, there are few empirical studies showing the effec-

tiveness of LiDAR descriptors on long-term localization capability in urban areas. Several works have

attempted to address long-term accurate (centimeter-level) localization within a prior LiDAR point

cloud map using Bayesian filtering. Maddern et al. [46] proposed a 2.5D rasterized, image-based, GPU-

accelerated search. Recently, Withers and Newman [73] introduced a point-wise rejection method for

handling scene changes and avoiding false localization. This kind of work usually focuses on how to model

structural scene changes within a Bayesian framework, rather than the global place retrieval capability

of large-scale localization.

Differing from the aforementioned descriptor-based category, an end-to-end localizer that infers a

robot’s pose directly using deep learning has nowadays been gaining attentions. This formulates the

localization problem as 6D pose regression [36] or a course place classification [72]. Compared to these

image-based localizers [36, 72], however, few direct methods accept a LiDAR point cloud as input have

been proposed.

In this paper, we present a CNN-based, end-to-end localization framework (Fig. 5.1). The proposed

localizer is based on a point cloud descriptor called Scan Context Image (SCI) that effectively summarizes

the unstructured point cloud into a structured form. We validate that only a single experience is sufficient

to demonstrate the effectiveness of our method on the tested datasets. Refer to the video (YouTube link,

https://youtu.be/apmmduXTnaE)) as well.

Our approach is similar to PlaNet [72] in that we also consider a place as a class and formulate a

localization task as a classification task using a CNN. Unlike PlaNet, which provides a rough location

scope that cannot be used for mobile robot navigation, we guarantee successful localization within a few

meters on a map of a several hundred or thousand meters. Our contribution points are summarized

below.

� We introduce the classification-based place retrieval pipeline using an image-shaped point cloud

descriptor called SCI.

� To alleviate false alarms during long-term localization, we propose an entropy-based detection

module for unseen places.

� Evaluations for two long-term datasets (the NCLT dataset [10] and the Oxford RobotCar dataset

[47]) are provided. The proposed method localizes a path of over 10 km for over a year and covers

all seasons and severe structural and viewpoint changes.

5.2 SCI Generation and Training

In this section, we introduce a 3D point cloud descriptor in an image format named SCI. Because

SCI is created from a point cloud descriptor, SC, we first provide a brief review of SC. We refer readers

to [37] for more detail. Next, we introduce a deep learning based classification method for long-term

localization. The overall pipeline, from the training to the procedure of the localization, is depicted in

Fig. 5.2.

38

https://youtu.be/apmmduXTnaE
https://youtu.be/apmmduXTnaE


5.2.1 A brief review of Scan Context (SC)

Scan Context (SC) takes a 3D point cloud as an input and divides its planar-surrounding regions

within a maximum range into sectors and rings, which are segments divided into azimuthal and radial

directions, respectively. The intersection of a sector and a ring is called a bin. SC only takes the

highest point value from each bin and arranges them into a 2D matrix form, through which the internal

arrangement of bins is preserved. The top part of Fig. 5.3 shows the making process of SC from a raw

point cloud. In this paper, the number of rings, the number of sectors, and the maximum range are 40,

120, and 80 m, respectively.

5.2.2 Scan Context Image (SCI)

The previously defined SC is a single-channel matrix that encapsulates robust structural information

(i.e., the maximum height of points) around a scene. Although SC is already in an image-like form, we

normalize it and convert this into three channels to be suitable as input for CNN. When converting, the

structural height out of [hmin, hmax] is saturated. In this work, we use a jet colormap, which has a larger

variance than sequential colormaps, and the mapping function (fc) with hmin = 0 m and hmax = 15 m.

Details are (5.1). In doing so, we empirically validate a small improvement compared with training with

one channel image. The proposed SCI increases the discriminative power to more than that of SC and

is also a more suitable format for inputting a CNN. This process is visualized in Fig. 5.3. We note that

further investigation on network tuning for monochrome images or colormap selections may improve the

localization performance.

c =


cmin, h < hmin

fc(h), h ∈ [hmin, hmax]

cmax, hmax < h, where h ∈ IR, c ∈ IR3.

(5.1)

5.2.3 Location Definition

Because we formulate the outdoor robot localization problem as a classification issue, we use a

classification network. We first divide the region, which is covered in the training sequence, into equal-

sized (e.g., 10 m by 10 m) grid cells on the x-y plane and assign a different index to each cell. A single

cell represents a single place. Fig. 5.4 visualizes the concept of gridded map with 10 m cell size.

Then, all SCIs acquired in a cell are used to train a CNN with its class label; the label is a one-hot

encoded vector of the corresponding place index. The label dimension is equal to the total number of

places because we consider each place as a unique class. Then, the network is trained with categorical

cross-entropy loss, which is generally used to train a classification network.

5.2.4 Network Selection

Any CNN structure (e.g., ResNet [26]) can be used to construct the proposed localization system,

but we use a LeNet [43]-like network with regularization to demonstrate that our method works well

with a simple network. A detailed structure of our network and parameters are shown in Table 5.1.
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Figure 5.3: Scan Context Image (SCI) generation from a raw point cloud and conversion to a 3-channel

SCI.

5.2.5 N-way SCI Augmentation

We propose N-way augmentation to achieve the viewpoint invariance to tackle potential viewpoint

variance in the long-term localization. Because the column order of SCI indicates the heading of a robot,

viewpoint variation via synthetic SCI in the training phase is fairly simple (e.g., the column-shift). Here,

N is the number of 360 degrees divided by a constant interval. An example of two-way augmentation

(what we call reverse augmentation) is visualized in Fig. 5.9.

40



(a) NCLT (2012-01-15)

(b) Oxford RobotCar (2014/07/14 15:16:36)

Figure 5.4: The example of the gridded map of the region of NCLT and Oxford RobotCar dataset. The

size of grid cell here is 10 m. These trajectory is from the 2012-01-15 of NCLT and 2014/07/14 15:16:36

of Oxford RobotCar. These sequences covered 579 and 700 places, respectively. We formulate a place

recognition problem as a classical deep learning-based classification problem. At the Oxford RobotCar

dataset, the nodes whose INS measurements is not good (red in Fig. 5.4(b)) is excluded for the training

and test.
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5.3 SCI Localization

5.3.1 Un-learned Place Detection

Our objective is to learn from a single day to predict over-year place recognition. In this LTA

scenario, the robot may visit a new place that is, not in the training set. Therefore, detection and proper

handling of this unlearned location is critical in LTA. Prior to the localization module, we first identify

whether a query place is a new place or not (i.e., a query point cloud is from a new place or not) to avoid

false localization. We call the new place, unseen place, and an existing place in the training sequence,

seen place. This task can be considered in unknown-unknown class detection [49], which has highly

attracted computer vision researchers for constructing more robust classification system. For example,

Dropout Variational Inference [35] can approximately provide a class probability but requires multiple

predictions, which is time consuming and thus may be difficult for real-time robot localization.

Unlike this costly method, we propose a way to directly use the entropy of the output vector

(without dropout at the test time) from the network. Note that we do not aim to approximate each

class probability; instead, we rather focus on identifying whether the query is seen or unseen. As will be

shown in §5.5, this entropy of the output vector has a substantially stronger discriminative performance

than traditional distance-based thresholding. Specifically, we use the following normalized entropy of

the prediction score vector

H(p) = − 1

Hmax

N∑
i=1

pi log2 pi, (5.2)

where pi is the ith element of the vector p and Hmax, which is the maximum entropy of a N dimensional

vector, exists for the normalization.

If the entropy of the prediction vector is higher than a given threshold τ (user parameter), it is

considered as a new place and rejected without localization. On the other hand, we only perform local-

ization in the following step for images classified as seen. Fig. 5.5 shows an example of the distribution

of entropies from seen and unseen places of the sequence.

Table 5.1: A simple network structure we used. BN and MP are batch normalization and max pooling,

respectively, and we used 2× 2 pooling size. The number in the Conv() and FullyConnected() layer

means the number of filters and the number of nodes, respectively. 5× 5 filters were used for all convnets

and 0.7 (30 % remains) dropouts were applied for all Dropout layers. N is the number of total places. We

trained the network with 64 of batch size and using Adam optimizer with default parameters (learning

rate = 0.001, β1 = 0.9, β2 = 0.999).

Input (batch size, 40, 120, 3 )

Conv1 BN(MP(ReLU(Conv(64, Input))))

Conv2 BN(MP(ReLU(Conv(128, Conv1))))

Conv3 Flatten(MP(ReLU(Conv(256, Conv2))))

FC1 FullyConnected(64, Dropout(Conv3))

FC2 softmax(FullyConnected(N , Dropout(FC1)))

Output (batch size, N)
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Figure 5.5: The example of the distribution of entropies of prediction score vectors for seen and unseen.

This example is from the test sequence 2015-06-12-08-52-55 of the Oxford RobotCar dataset. Left: The

histogram of predictions’ entropies from seen places usually has small values. Right: The histogram of

entropies from unseen (new) places has a large variance, and there are higher entropies than the case of

seen places.

5.3.2 Localization

If the query is considered to be seen (i.e., the point cloud is obtained from seen places), then

localization is performed using the prediction score vector. The index of this vector’s element, which

has the largest score, is concluded as the current place. More generally, we would say the localization is

successful if the ground truth index of a query place belongs to a set of top N indexes whose scores are

in a larger order in the network’s prediction score vector.

5.4 Experiments

In this section, we first describe experimental settings and datasets used for evaluation.

5.4.1 Benchmark Datasets

We used two long-term datasets that are publicly available in the robotics community: the NCLT [10]

and Oxford RobotCar [47] datasets. Both datasets provide multiple sequences along similar trajectories

over a year and include various environmental changes for the same places.

The NCLT dataset provides 3D LiDAR scans and each scan is directly encoded into the SCI as

described on the left of Fig. 5.6. For the Oxford RobotCar dataset, we used sequences with the full

trajectory of nearly 10 km. This dataset has no 3D LiDAR, and 2D LiDAR were mounted perpendicularly

to the vehicle’s moving direction. Thus we accumulated 2D scans along a local trajectory for enough

length as visualized on the right of Fig. 5.6. We set an accumulation length (or a window size) equal to

the maximum range, which is the parameter of an SCI. We use the visual odometry the dataset provides

for stacking scans. By stacking them, we use the relative motion between a previous scan and a recent

scan is placed at the origin. In doing so, we can make a 3D point cloud (or a submap) with enough
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(b) Sample point cloud and SCI from Oxford RobotCar dataset

Figure 5.6: Visualization of a point cloud and the associated SCI for (a) 3D LiDAR and (b) 2D LiDAR.

In (b), the accumulated point cloud depends on the trajectory and may result in missing information.

Despite this missing portion in the SCI, the deep-learning-based localizer successfully matched the place

from the trained map.

information to make an SCI. We considered the global coordinate available from the ins.csv file as the

ground truth of each place. Only places with a reliable inertial navigation system (INS) status (i.e.,

INS SOLUTION GOOD) are used for training and tests.

The size of a grid cell for the main analysis (Fig. 5.7 and Fig. 5.8) is 10 m by 10 m. For this grid

map resolution, the NCLT and Oxford RobotCar datasets have 579 and 700 places in their training

sequences, respectively. The places from the NCLT and Oxford RobotCar datasets are trained with only

a single sequence, and then the localization is evaluated for the following 10 sequences, which covers over

a year. For training, an SCI and descriptors of comparison methods are sampled for every 1 m. The

test sequences are also evaluated by sampling every 1 m. Details about the training and test sequences

of the NCLT and Oxford RobotCar datasets are summarized in Table 5.2. The seen and unseen rows

indicates the number of queries from seen and unseen places.
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5.4.2 Comparison Methods

We compare our method, SCI-localization, with three state-of-the-art handcrafted and learning-

based point cloud descriptors: M2DP [27], Scan Context [37], and PointNetVLAD [70]. For a fair

comparison, both methods construct a database using only descriptors from a single sequence and are

compared to a query descriptor from test sequences for over a year. The nearest candidate’s index is

considered a query’s location.

M2DP is a lightweight point cloud descriptor designed for loop-closure detection. The core idea

of M2DP is projecting a 3D point cloud into multiple 2D planes. We used the same parameters and

procedure as the original authors by using the open-source of M2DP1, and we acquire a 192-dimension

descriptor from a point cloud.

Scan Context-50 exploits a similar descriptor as the SCI, but in a non-learning based way. SC

used the column-wise comparison to calculate the distance between a query and a candidate. To clearly

validate the learning effect, we compare SCI against Scan Context-50 in [37], which is the method that

takes 50 candidates for the pairwise comparison.

PointNetVLAD is a combination of PointNet [56] and NetVLAD [3], so it can directly consume

a point cloud without any reformulation such as projection or voxelization. We applied preprocessing

similar to the original paper; a ground-removed point cloud within a [−25 m, 25 m] cubic window is

filtered into the constant number (4096) points and rescaled into a [-1, 1] range with a zero mean. This

processed point cloud is fed to the network, and, finally, we get a 256-dimensional descriptor. We used

the pretrained model (refined version) the authors provided2.

5.5 Evaluation Results

In this section, we provide intensive analyses to validate the effectiveness and robustness of the

proposed method. The detailed information of training data and test sequences are described in Table 5.2.

The test sequences of each dataset were possibly selected to include at least one sequence per month to

cover various conditions over the entire year. The number of samples in rows of seen and unseen places

in Table 5.2 are sampled per every 1 m and are used for the evaluation.

5.5.1 Precision-recall Curve

We first evaluate the general performance using precision-recall curve for both datasets throughout

the long-term operation (Fig. 5.7). The evaluation procedure is depicted in the right side in Fig. 5.2. We

1https://github.com/LiHeUA/M2DP
2https://github.com/mikacuy/pointnetvlad

Table 5.2: Summary of datasets

Dataset Train Seq. Test Seq.

NCLT

2012-01-15 2012-02-04 2012-03-17 2012-05-26 2012-06-15 2012-08-20 2012-09-28 2012-10-28 2012-11-16 2013-02-23 2013-04-05

579 places
Seen 5170 5449 5533 3321 5146 4626 4623 3575 4114 3341

Unseen 441 428 773 742 835 919 1034 1290 1095 1162

Oxford

Robot

Car

2014-07-14

-14-49-50

2014-07-14

-15-16-36

2014-11-25

-09-18-32

2014-12-17

-18-18-43

2015-02-03

-08-45-10

2015-03-10

-14-18-10

2015-04-17

-09-06-25

2015-05-22

-11-14-30

2015-06-12

-08-52-55

2015-07-10

-10-01-59

2015-08-13

-16-02-58

700 places
Seen 4079 5484 3926 5657 5106 5485 5664 4321 4872 5043

Unseen 414 2066 1769 2163 2782 2571 2232 3062 2585 2466
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Figure 5.7: Precision-recall curves for two long-term datasets, NCLT and Oxford RobotCar dataset.

considered the localization to be correct if the index of the largest element of the network’s output vector

(for our method) or nearest descriptor’s place index (for M2DP, Scan Context-50 and PointNetVLAD)

is the same as the answer (i.e., top 1 performance).

The learning-based descriptor, PointNetVLAD, outperformed the handcrafted method, M2DP, by

a large margin. However, PointNetVLAD revealed lower performance than our method in terms of

long-term localization performance. Moreover, the proposed SCI localization method presented less

fluctuation than others in performance over time. For Scan Context-50, the column-wise matching

function of SC assumes a surround-capturing LiDAR; thus it showed the poor performance at the Oxford

RobotCar dataset, which used 2D LiDAR. SCI decreases performance over time but still performs better

than other methods.

5.5.2 Retrieval Capability

For large-scale localization, not only the top 1, but taking more candidates (e.g., top 5 and top 25)

would also be meaningful. Therefore, we provide a more in-depth analysis of the retrieval power of each

method. We extended the criteria of the correct answer to the top 5 and top 25 candidates to investigate

by how much the performance of each method increased.

Fig. 5.8 shows a comparison of overall performance. We plot the area under the curve (AUC) of the

precision-recall curve of each sequence as a measure. The closer the AUC is to 1, the more perfect the

localization. The AUC values of all methods have increased by allowing the top 25 candidates but our

top 1 performance is comparable or better than others’ top 25 performance.

5.5.3 Long-term Robustness

In this subsection, we investigate two types of environmental changes; non-structural and structural

changes.

Non-structural changes: Although the structural information of a scene is naturally robust for

LTA, there are a few challenging factors that make a point cloud different from the experience. Fig. 5.9
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Figure 5.8: AUC performance changes over time for different criteria of success localization.

visualizes the examples of challenging cases and their corresponding SCIs from the NCLT dataset. The

NCLT dataset always had partial and varying occlusion due to an accompanying human pilot. In

addition, the Segway-like robot used in the NCLT dataset had an unstable roll motion compared to a car

platform, and partial structures such as foliage changed over time. Despite these challenging factors, our

method successfully localized a query because the SCI preserved the internal relations of the egocentric

scene structure, unlike the other descriptors that lost the original scene’s structural shapes.

Structural changes: The long-term structural challenges arise from structural experience (i.e.,

structures that existed at the training sequence) that may have disappeared (demolition) or been newly

constructed (construction) over time. For validation, we removed points within a randomly selected

sector or added new randomly generated wall-shaped points, as in Fig. 5.10(a). Because the M2DP

is based on point projection, it is less affected by the appearance of structures but is vulnerable to

demolition. PointNetVLAD was sensitive to the removal and addition of points as it uses only 4096

points as the input. Although SC utilizes descriptors very similar to SCI, we verified that ConvNet

based unseen place detection and classification-based retrieval are superior in localization performance.

5.5.4 Robustness to Viewpoint Changes

Arbitrary viewpoint variation inevitably occurs during the long-term localization. In this section,

we examine the effect of N-way augmentation on the viewpoint change robustness by increasing N in

the training phase. Unfortunately, the number of queries in original datasets are rather small for testing

various viewpoint cases. Instead, we tested the trained network by randomly rotating a query point

cloud’s heading.
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(human pilot)

Figure 5.9: Robustness to non-structural changes. Despite challenging factors (e.g., viewpoint changes,

occlusions, and foliage), the proposed method successfully found its location with a high score for over

hundreds of places over a year.
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(b) Precision-recall curves for demolition and construction. Each line is a mean for 10 test

sequences.

Figure 5.10: Robustness to structural changes on the test sequences of the NCLT dataset.

As seen in Fig. 5.11(a), existing descriptors, including the baseline of SCI-localization without N-

way augmentation, failed to localize under arbitrary viewpoint changes. We empirically validated that

using four-way augmentation could yield sufficient robustness to the viewpoint variation. In doing so,

the general performance is also preserved as in Fig. 5.11(b). The bottom of Fig. 5.11(b) presents the

AUC relative to the original performance in Fig. 5.7(a) without the intentional heading rotation.

5.5.5 Grid Cell Size

We also evaluated localization performance by considering different grid sizes to identify whether

finer localization is possible. We conducted the same experiment as in §5.5.1 but with different grid

cell sizes. The grid cells are finer (5 m by 5 m) and coarser (20 m by 20 m). The number of output

nodes in the SCI localization network was reset to the new total number of places and retrained. The

results for different grid cell sizes are shown in Fig. 5.12. Despite increased labels of over 1000 places

for 5 m2 resolution and a slight decrease in performance, our method still presented higher performance

with lower variance than PointNetVLAD with a 10 m resolution for both datasets.
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(a) Retrieval performance of each method for random

viewpoint changes
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(b) Precision-recall curves for each N-way augmentation.

Figure 5.11: Robustness to random viewpoint changes on the test sequences of the NCLT dataset. Each

line is a mean for 10 test sequences.

Figure 5.12: Performances with respect to different grid cell sizes. The vertical black line pinned at each

bar represents the standard deviation of all (10 for each dataset) test sequences.

5.5.6 Runtime Evaluation

Another strength of the proposed method is the lightweight implementation. For the runtime com-

parison in Table 5.3, all implementations used Matlab except for a few parts that used the deep network
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Table 5.3: Average time cost for each methods. The comparison is conducted on the 2013-04-05 of the

NCLT dataset.

Method Descriptor Generation (sec) Retrieval (sec) Total (sec)

SCI 0.0434 0.0047 0.0481

SC-50 0.0413 0.4633 0.5046

PNVLAD 0.1374 0.0220 0.1594

M2DP 0.0758 0.0195 0.0953

by using Python at NVIDIA GTX 1080Ti with a test batch size of one.

PointNetVLAD showed the longest time for a generation, requiring both preprocessing (e.g., ground

removal and filtering) and passing the network. However, both PointNetVLAD and M2DP are lightweight

descriptors, and thus find a nearest in the database quickly (i.e., short retrieval time). Scan Context-50 is

the slowest for retrieval, as reported in [37]. Unlike other methods, the SCI’s retrieval time is the shortest

because SCI-localization directly obtains scores for N places via a single pass through the network rather

than a pairwise comparison with the whole database.

5.6 Conclusion

We presented a global end-to-end localization method based on deep learning by learning the novel

point cloud descriptor, SCI. The proposed SCI with a classification network is more robust to the long-

term robot localization of other state-of-the-art pairwise scoring-based place retrieval methods [27, 70].

We conducted extensive evaluations on public long-term datasets (NCLT and Oxford RobotCar), and our

method showed a consistent, and state-of-the-art performance for over a year even though the network

was trained using only a single sequence. Due to its robust and global performance, we expect the

proposed framework could also be used for the kidnapped robot problem.
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Chapter 6. Conclusion

Overall summary of this thesis and future works are provided in this chapter.

6.1 Contributions

Through this thesis, we tried to answer the single question, ‘What is the sense of a place and where

does the sense of place originate from?’. We found a clue for this answer from the isovist, which was

originally invented from the space analysis researches, and proposed a novel point cloud descriptor called

a Scan Context, which is inspired from the isovist. The detail consideration was provided in chapter §3.

We have empirically showed that this descriptor with the meaning of 3D isovist shows robust per-

formances in large gap compared to existing methods in robot localization.

Therefore, we would like to say from these promising results: The isovist of the place, i.e., the

openness of the place, is important not only to a human but also to a robot. Although a place can be

defined in various ways (e.g., set of semantic objects or visual appreciation), openness is the one of the

powerful measure that summarizes the unique characteristics of a place, which is distinguishing it from

other places.

6.2 Future Work

In this subsection, we discuss some feasible ideas, which are remained for future works.

� Learning-based Scan Context Similarity Function. Although Scan Context is robust, there is a

limitation that the column-wise comparison (4.2) for online place recognition is still slow. Therefore,

we will propose a deep network-based method to measure the similarity between two Scan Contexts.

� Flexible Grid Map. For long-term localization, we proposed the predefined grid map-based local-

ization using the classification network. The fixed-size of grids makes it is hard to recognize a new

but actually near to a seen place that is an adjacent grid of a seen grid, which exists in a training

sequence. Therefore, we need to devise a more flexible map represenatoin.

� Lidar Deep Odometry. We showed that rotation registration is possible using Scan Context. We did

not model translation in this thesis, but we expect translation to be inferred as well, particularly

with help of deep learning. Therefore, if we can infer the relative pose between the two Scan

Contexts, we expect that a full deep learning based LiDAR odometry would be possible.

� Scan context generation from image. A LiDAR sensor has been pointed out that unlike images, it

provides rich structure information without being affected by light conditions, but it is nevertheless

more expensive than a camera, thus the LiDAR sensor is hard to equipped for every autonomous

robot. Therefore, it is very natural question whether we can generate a Scan Context from an

image. In other words, it is a study of whether to produce isovist and openness information of

place from image.
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� 3D Isovist meets Robot Perception: robotics-aided realistic, real-time, and large-scale urban Anal-

ysis. Scan Context effectively summarizes the openness of a place. In other words, it could mean

real-time large-scale urban analysis can be performed by an autonomous robot equipped with a

LiDAR and using Scan Context. For the conventional methods in the urban design field, it was

necessary to construct a model in order to analyze the openness of city-size scale. However, using

LiDAR and Scan Context, the robot can analyze the urban space at the same time of driving in

the city without any model and offline analysis.
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