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Scan Context++: Structural Place Recognition
Robust to Rotation and Lateral Variations

in Urban Environments
Giseop Kim, Student Member, IEEE, Sunwook Choi, and Ayoung Kim Member, IEEE,

Abstract—Place recognition is a key module in robotic nav-
igation. The existing line of studies mostly focuses on visual
place recognition to recognize previously visited places solely
based on their appearance. In this paper, we address structural
place recognition by recognizing a place based on structural
appearance, namely from range sensors. Extending our previous
work on a rotation invariant spatial descriptor, the proposed
descriptor completes a generic descriptor robust to both rotation
(heading) and translation when roll-pitch motions are not severe.
We introduce two sub-descriptors and enable topological place
retrieval followed by the 1-DOF semi-metric localization thereby
bridging the gap between topological place retrieval and metric
localization. The proposed method has been evaluated thoroughly
in terms of environmental complexity and scale. The source code
is available and can easily be integrated into existing LiDAR
simultaneous localization and mapping (SLAM).

Index Terms—Place recognition, Localization, Range Sensors

I. INTRODUCTION

Recognizing a previously visited place is important for
various robot missions (e.g., loop detection in simultaneous
localization and mapping (SLAM) [1], global localization for
a kidnapped robot [2], or multi-robot mapping [3]). Describing
a place with a set of compact representations has been tackled
in depth within the computer vision and robotics community,
yielding many state-of-the-art visual place recognition meth-
ods [4, 5, 6, 7]. In contrary to the flourishing studies on visual
place recognition, studies on range sensors are still missing a
solid solution to this global localization problem.

Recent studies have reported [1, 2, 8, 9, 10, 11] that
structural information could be more effective than appearance
particularly within outdoor environments. These studies had
attempted to overcome the major bottlenecks resulting from
unstructured, unordered, and sparse range sensor data, which
make consuming input data harder than pixelated image data.
Existing methods have focused on compactly summarizing a
place, but they have rarely achieved invariances in structural
place recognition.
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Our preliminary version of this paper presented in [1] tried
to establish this compact representation by capturing the high-
est structural points when the level of roll-pitch disturbances
is not severe (e.g., under 10◦) such as a wheeled robot or
a slow walking hand-held system. This strategy allowed us
to achieve robustness for underlying structural variance (e.g.,
dynamic objects and seasonal changes) for incoming Light
Detection and Ranging (LiDAR) measurements. Although our
previous Scan Context showed meaningful performance, the
algorithm failed to achieve invariance in the lateral direction
and was inefficient using a brute-force search. Overcoming
these limitations in [1], we complete the algorithm to include
both rotational and lateral robustness thereby introducing a
generic structural place recognition for a range sensor. Sec-
ondly, the modified algorithm improved previously brute-force
search to use sub-descriptors and expedited the process by the
order of magnitude. In summary, our new contributions are:

• Robustness to Lateral/Rotational Changes: Missing
lateral invariance may be a critical issue in an urban envi-
ronment where lane-level change is inevitable. To resolve
this limitation, we generalized the previous descriptor to
include both lateral and rotational robustness simultane-
ously. This is achieved via Scan Context augmentation
based on urban road assumption.

• Semi-metric Localization: Combining place retrieval
and metric localization, our global place recognition
method bridges the gap between topological and metric
localization. The proposed method provides not only the
retrieved map place index but also 1-DOF (yaw or lateral)
initial guess for metric refinement such as Iterated Closest
Point (ICP).

• Lightweight and Modules Independence: As a global
localizer, the proposed method does not require prior
knowledge or any geometric constraints (e.g., odometry).
The implementation is lightweight provided in a single
C++ and header pair and readily integrable to existing
SLAM framework.

• Real-time Performance on CPU: By introducing
compact summarizing sub-descriptors, keys, we achieved
substantial cost reduction. The retrieval key based tree
search eliminates naive pixel-wise comparison followed
by aligning key based pre-alignment. Our method runs in
real-time supporting up to 100 Hz (e.g., average 7.4 ms
on KITTI 00 [12]) without requiring GPU.

• Extensive Validation: We evaluate the proposed method
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across diverse and challenging test scenarios to validate
both in-session and multi-session scenarios. We note the
existing precision-recall curve may not fully capture the
loop-closure performance for SLAM research missing
evaluation on the match distribution. We propose to use
DR (distribution-recall) curves to measure not only the
recalls but also their diversity for the meaningful loop-
closure.

II. RELATED WORKS

In this section, we provide a literature review on place
recognition in both visual and structural aspects. We briefly
review recent place recognition works, focusing on the sensor
modality as well as global and local descriptions.

A. Place Recognition for Visual Sensing

For visual recognition, both the local and global as-
pects of the place summarization were examined. The local
description-based methods relied on detecting and describing
handcrafted local keypoints (i.e., a small patch) [13, 14]. Using
these local descriptors, Bayesian inference [4] or bag-of-words
vocabulary tree [7] was applied for place recognition. Cadena
et al. proposed fusing the bag-of-words and a Conditional
Random Field (CRF) matching of 3D geometry for a stereo
camera system.

Compared to local descriptors, global descriptors are more
compact in representation and robust to local noises. The entire
image is encapsulated by a single condensed representation
(e.g., a fixed-size vector [16, 17] or a downsized image
[5]) without maintaining a set of local keypoint descriptors.
Similarly, as in local descriptors, recent studies in global
descriptors enhanced the performance by exploiting structural
information. Oertel et al. [11] reported that the use of structural
cues when making a global descriptor yields higher perfor-
mance than appearance-only methods. Mo and Sattar [10]
fed reconstructed 3D sparse points into a LiDAR descriptor
pipeline, which outperformed appearance-only-based global
descriptors.

B. Place Recognition for Range Sensing

1) LiDAR: The early phase of LiDAR-based place recog-
nition focused on 2D range data [18, 19]. Olson proposed
correlative scan matching-based loop closure detection for
2D LiDAR [20, 21]. As 3D LiDAR appeared, 3D point
cloud summarization drew attention. For the initial 3D LiDAR
place recognition methods [22, 23, 24], local keypoint-based
approaches were used, similar to following the early history
described above in the visual domain.

A point cloud from a 3D LiDAR poses challenges in a
different aspect. First, the data is unstructured without having
a constant and consistent grid density. Second, the data sparsity
grows as the range increases, varying the target object density
depending on the sensing range. These sensor characteristics
make the local descriptions unstable; thus, a courser summa-
rization unit that is robust to the local noise and inconsistent
point density is preferred. M2DP [25] compressed a single

LiDAR scan into a global descriptor (i.e., 192D vector) that
is robust to noisy input. PointNetVLAD [26] leveraged a
learning-based approach to summarize a place into a single
vector representation.

However, despite the performance and robustness of global
descriptors, one drawback is that they do not secure invariance
compared with local-based methods. As reported in [2], these
global descriptors were less invariant to the transformation
(e.g., heading changes) because transformed local point coor-
dinates may produce different embedding and cause failure in
place recognition (Fig. 1). Recently, similar to our approach, a
semi-handcrafted heading-invariant feature learning approach
named LocNet [27] was proposed. However, compared to
LocNet, achieving not only rotational but also translational
invariance is required while maintaining the performance of
the current state-of-the-art global point cloud descriptors.

In this line of study, a local characteristic such as segment
or height was examined. For example, Dubé et al. proposed a
segment-based global localization method using a handcraft
segment descriptor [29] and learned segment embeddings
[28]. They recovered a relative transformation between two
matched frames through geometric consistency checks, even
under severe viewpoint changes such as reverse revisits. Our
preliminary work, Scan Context [1], proposed to make a 2D
descriptor based on the height of the surrounding structures.
This descriptor obtained rotational invariance and yielded
relative yaw as a by-product. Stemming from this work, some
authors [30, 31] tried to simultaneously estimate the relative
yaw between two scans and their similarity. Learning-based
approaches included semi-learned [32, 2], and full learning-
based [30, 31] methods.

2) Radar: More recently, a long-range perceptible
frequency modulated continuous wave (FMCW) radar has
been highlighted in robotics applications [33, 34]. Radars
provide far longer range and robustness compared to cameras
and LiDAR; however, radar place recognition methods are
still not mature. Exploiting the image-like format of radar
data, some studies leveraged computer vision techniques to
describe a radar image at local [35] and global description
[36, 37] levels. However, the projection model of the radar
image inevitably eliminates height information generating a
top-down view. To handle this elevation loss, Hong et al. [38]
used a LiDAR descriptor M2DP [25] but using the intensity
of a pixel in lieu of a point’s height. Similarly, [34] showed
the feasibility of Scan Context by replacing the height with
the intensity.

III. REQUIREMENTS FOR STRUCTURAL PLACE
RECOGNITION

A. Terminology and Problem Definition

We first define our place recognition problem. As a robot
traverses an environment, a set of range sensor measurements
is streamed with increasing timestamps. We consider every
single sensor measurement zt acquired at a certain spatial
location lt at time t as a place. A map is a database, a
set of all streamed measurements after the time a robot has
started a mission. Then, our place recognition can be defined
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as finding a revisited place within a map for a query place.
It is also important to trustfully decide whether there is no
revisited place in a map. Revisitedness is satisfied for two
places, a and b, temporally apart from a certain window size
(i.e., |tb − ta| > δt), if the Euclidean distance between two
places’ spatial locations is less than a certain threshold (i.e.,
|lb − la| < δl).

To construct such a place recognition system, two sub-
modules are required. The first is description function f( · ).
To ease handling noisy or heavy raw measurements, a raw
measurement zt is encoded into a more compact form called
descriptor ft = f(zt). The second is retrieval that defines a
similarity function sim( · , · ) or distance function D( · , · ). It
takes two descriptors and returns a scalar-value similarity or
distance in the descriptor space. Then, the place recognition
is reduced to the nearest search problem using the description
and similarity functions when a query measurement z and a
map are given. One can conclude that two places a and b are
the same if the descriptor distance D(fa, fb) is lower than a
threshold τ .

B. Invariance

Most LiDAR place recognition methods [25, 28, 32, 31]
have been tested over less complex environments [12, 39]
with few dynamic objects or viewpoint changes. The existing
research has mostly focused on increasing the discriminabil-
ity of a descriptor, rather than on defining and overcoming
structural diversity. We provide a taxonomical analysis of the
potential nuisances for structural place recognition, as shown
in Table I. We categorized each invariance in the comparison
to the rather widely-studied visual place recognition problem
for each corresponding invariance type.

1) Internal Factors: The measurement’s variation could be
derived from a robot itself, we named internal factors. This
includes rotation, translation, and scale changes of the sensor
coordinate mostly induced by ego-motion (R, T, and SP in
Table I). Fig. 1 illustrates the sample measurement discrepancy
under rotational and translational variance. In terms of scale,
the same object looks very different due to the variation in
point cloud density caused by the sensing distance.

2) External Factors: Similar to illumination changes (short-
term variance) and weather changes (long-term variance) in
the visual domain, structures may undergo similar variance
in the short-term through occlusions by dynamic objects
and in the long-term through permanent structural changes
from construction or demolition. This external factor becomes
critical as we deploy robots for long-term navigation.

TABLE I
REQUIRED INVARIANCE FOR VISUAL AND STRUCTURAL PLACE

RECOGNITION.

Internal Factor External Factor Sensor Specification
Visual R T S I W FOV
Structral R T SP D SV FOV NR

R: rotation I: illumination FOV: field of view
T: translation W: weather NR: number of rays
S: scale D: dynamic objs
SP: sparsity SV: structural variance

(a) Rotational Displacement (b) Lateral Displacement

Fig. 1. Sample point cloud undergoing rotational (e.g., reversed revisits) and
translational (e.g., lateral lane changes) motion. The red indicates the query
scans, and the blue depicts experience in the database. Unlike the view in
global coordinates (i.e., world coordinate, top row), the measurement looks
different in the local coordinates (i.e., sensor coordinate, bottom row). Also,
note that many dynamic objects exist in both scans.

3) Sensor Characteristics: The last factor, sensor charac-
teristics, maybe more range-sensor specific. Unlike the highly
structured sensor data obtained by cameras, LiDAR point
clouds are unstructured, and sensing changes dramatically
depending on the sensor’s specifications (e.g., range, number
of rays, and point cloud resolution depending on field-of-view
(FOV)). Thus, a generic place recognition system should be
invariant to sensor specifications.

C. Overview

The proposed method consists of two parts: (i) place de-
scription and (ii) place recognition. The overall pipeline is
illustrated in Fig. 2. The place recognition module consists
of place retrieval, semi-metric localization, and verification.
In the next two sections, we will introduce each module in
detail.

IV. SCAN CONTEXT DESCRIPTOR (SCD)

In this section, we describe a novel spatial descriptor named
Scan Context Descriptor (SCD). The pipeline begins with
partitioning the raw measurement and projecting them into
discretized bins using bird-eye-view (BEV). When dividing
into the BEV bins, two types of perpendicular bases (polar
and Cartesian) are considered. After partition and coordinate
selection, the subset of the measurement is encoded to its
associated discretized bin using the bin encoding function. As
we present, the invariance of the proposal place recognition
module arises from the bin encoding function and the distance
function.

A. Motivation

Our descriptor and search engine were strongly motivated
by the revisit patterns in urban environments. We found typical
patterns due to the nonholonomic vehicle motion following
traffic rules (e.g., lane-keeping). The dominant motion is
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Fig. 2. The overall framework. Given a raw range measurement, the proposed method seeks the corresponding place index from a set of places in the map.

locally two-dimensional, and the motion occurs with at most
two directions that are likely to be disjointed. These typical
patterns motivated the choice of two coordinate frames, polar
and Cartesian, and the associated matching algorithm.

B. Descriptor Axes and Resolution

We assume that the input is a single scan of 3D LiDAR.
The first phase for generating the descriptor is to partition a
downsampled point cloud within a region of interest (ROI).
The upper bound of the ROI and the partitioning resolution
decide the shape of an SCD. Given the partitioned raw mea-
surements, we project them on 2D descriptor space; namely,
the approach first (i) projects each 3D point to a 2D point, (ii)
parametrizes the 2D point in polar or Cartesian coordinates,
and (iii) obtains a scalar value (details in §IV-C) for each bin
by discretizing the 2D space.

As shown in Fig. 2, we name the horizontal axis the aligning
axis (A-axis) and the vertical axis the retrieval axis (R-axis).
The change along the A-axis corresponds to the column-wise
shift; thus, pre-alignment along the A-axis will allow us to
infer a rough metric-level relative pose, overcoming changes in
the associated direction. The choice of aligning/retrieval axes
determines the type of SCD, as either Polar Context (PC) and
Cart Context (CC).

1) Polar Coordinates: As introduced in our earlier work
[1], the PC adopts polar coordinates using the azimuth θ as
the A-axis and the radius r as the R-axis. Because the azimuth
is on the A-axis, the PC is robust to rotational variance.

2) Cartesian Coordinates: The CC leverages Cartesian
coordinates and uses the lateral direction (y) as the A-axis.
The longitudinal direction (or travel direction, x) becomes the
R-axis. Naturally, the descriptor is invariant to lateral direction
translation.

3) Descriptor Resolution: The resolution of the axes de-
termines the resolution of the descriptor, which is the user
parameter of the proposed method. The user parameters are
denoted as

(∆R,∆A, [Rmin, Rmax], [Amin, Amax]), (1)

where each component indicates an ordered set consisting of
the resolution of the R-axis, the resolution of the A-axis, the
range of the R-axis, and the range of the A-axis, respectively.

Sample parameter sets and their SCD are given in Fig. 3(b). As
will be discussed in §VIII-A, coarse discretization implicitly
reduces the influence of dynamic objects, noisy local struc-
tures, and computational cost.

4) Independence of the Input Modality: The partitioning is
independent of the measurement’s distribution or data type
(e.g., a BEV image, voxels, or 3D points). Therefore, our
descriptor is generic with regard to any range measurements.
The descriptor representation covers not only 3D point clouds
but also other range sensors such as radar [34] by selecting a
proper bin encoding function in §IV-C.

C. Bin Encoding Function

We denote a single disjoint section partitioned by the
aligning and retrieval axes as a bin. A single bin includes
a subset of a robot sensor measurement (Zij ∈ Z), where the
i and j indicate the A-axis and R-axis indexes, respectively.
The bin may be empty, Zij = ∅, when no range data falls into
the bin, in which case we assign a value of 0 to that bin.

For each subset of measurement Zij for bin (i, j), we assign
a representative value using a bin encoding function ψ( · ). The
bin encoding function should be able to encapsulate the subset
of the raw data in order to make the descriptor discernable and
robust to the nuisances (Table I).

Requirement 1. A bin encoding function, ψ : Zij → R,
is invariant to the internal factors and independent of sensor
specifications.

Following our previous work [1], we propose to assign the
maximum height of 3D points within a bin. The intuition
behind this selection stems from an urban planning concept
called isovist [40, 41]. In this concept, the maximally visible
structure and its visible volume’s polygon shape decide the
use of a place and make a place discernable. Focusing on
the maximum height instead of structural shape eliminates the
sparsity variation caused by the sensing resolution, range, and
object size. Notably, any other function that meets the above
requirement could be used as the encoding function. For the
example of an FMCW radar [34], the raw radar intensity value
was adopted. Some follow-up studies of our previous work [1]
leveraged LiDAR intensity [42], interpolated intensity [34],
and difference in the height of 3D points [10]. We note that
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(a) Partitioning and coordinates selection (b) SCDs of (a)

Fig. 3. (a) Sample point cloud and (b) the associated SCDs. In (a), the yellow and gray color-filled entities depict bins for PC and CC, respectively. The red
arrow represents the aligning axis. The green arrow represents the retrieval axis. In (b), each bin color indicates the maximum height in a bin; red is high
(e.g., 10 m), blue is low (e.g., 0 m). In (b), the PC (top) has the parameters (20, 60, [0, 80] m, [0, 360]◦), and the CC (bottom) has the parameters (40, 40,
[−100, 100] m, [−40, 40] m).

heterogeneous LiDAR place recognition in situations where a
mapper and a localizer are different (e.g., LiDAR’s mounted
height varies) is beyond this paper’s scope because it does not
obey the above requirement.

D. Scan Context Descriptor

After the ROI partitioning (§IV-B) and bin encoding
(§IV-C), each bin contains a representative feature summa-
rizing the data within the bin (i.e., the maximum height for
SCD). We accumulate these bin values into a matrix form to
complete a 2D descriptor for a place; the rows and columns
of the matrix correspond to the retrieval axis and the aligning
axis. The resulting descriptor can be understood as the contour
of the skyline of the surrounding structures. Depending on the
coordinate selection, we name the resulting 2D descriptor as
Polar Context (PC) or Cart Context (CC).

1) Polar Context (PC): When the polar-coordinate ROI is
used, we name the resulting SCD as a PC. The PC is designed
for rotation-invariant place recognition (e.g., revisit in the
reversed direction) because the rotational variation corresponds
to column-wise shifts.

2) Cart Context (CC): Similarly, using Cartesian ROI parti-
tioning yields a SCD called a CC. In a CC, lateral translation
is reflected as column-wise shifts; thus the CC can handle
lateral variation, including a revisit with lane changes.

Each SCD has its own invariance for tackling the internal
factors. PC and CC allow one dimension for the A-axis and
may be limited when rotation and translation occur simultane-
ously. To cope with this, we propose hallucinating the R-axis
to achieve robustness in both directions (§V-D).

E. Distance between SCDs

Next, we define the proximity between two places by the
similarity score of the associated SCD.

1) Alignment Score: As illustrated in Fig. 4, if two SCDs
are acquired from the same place, then two descriptors should
contain consistent contents within a matrix but may reveal a
column order difference. To measure similarity, therefore, we
should examine the sum of the column-wise co-occurrences
using the cosine similarity between two descriptors. This
column-wise comparison is particularly effective for dynamic
objects or partial noises. A cosine distance is used to compute
a distance between two column vectors, cjQ and cjM , at the
same column index j. The distance between two descriptors
is

d(fQ, fM ) =
1

NA

NA∑
j=1

(
1−

cjQ · cjM
‖cjQ‖‖c

j
M‖

)
. (2)

The subscripts Q and M indicate query and map places, where
the descriptor’s dimensions are f ∈ RNR×NA . In addition,
we divide the summation by the number of columns for
normalization.

2) Naive Column Alignment: However, the column of the
query SCD, fQ, may be shifted even in the same place (Fig. 4).
By simply shifting the order of the query descriptor while
the fM is fixed, we can calculate distances with all possible
column-shifted fQ and find the minimum distance. Then,
the minimum distance of (2) becomes our desired distance
function D( · , · ) as

D(fQ, fM ) = min
n∈[NA]

d(fQ,n, fM ) , (3)

n∗ = argmin
n∈[NA]

d(fQ,n, fM ) ,

where [NA] indicates a set {1, 2, ..., NA-1, NA} and fQ,n is
a SCD whose columns are shifted from the original one by
an amount n. The column-shift process aligns the rotational
variance for PC and lateral displacement for CC.

F. Sub-descriptors
The abovementioned naive comparison over the full 2D

descriptor is computationally expensive. To alleviate this cost
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Fig. 4. The three white dots in the top row indicate three sample nodes
in the ground-truth trajectory. The vehicle visited the place three times
while changing lanes. Below is the sample CC corresponding to each node.
Comparing the three sample CCs, the contents are preserved within each
column, while only the column orders are shifted among the nodes. The
motion-induced change in the descriptor appears as a SCD column order
shift in the descriptor space.

we introduce two sub-descriptors. From the full 2D descriptor,
SCD, we extract 1D vectors by summarizing the descriptor in
the row and the column direction. Each sub-descriptor plays a
major role in place recognition and semi-metric localization.

1) Retrieval key: The first sub-descriptor introduced is the
retrieval key, v ∈ RNR , a vector whose dimension is equal to
the number of SCD rows, NR. Given any function that fR( · )
maps a column of a SCD to a single real number, we squeeze
the column dimension of a SCD by applying the fR( · ) for
each row in a SCD. Additionally, the following condition is
required. For a given row r of the SCD,

Requirement 2. A retrieval key function fR : r → R is
permutation invariant.

With this requirement, we can create a sub-descriptor that is
unaffected by the column order; this means we can produce a
consistent sub-descriptor independent of the internal factors of
the nuisances (e.g., rotation or lane changes). Practically, we
used the L1 norm for our experiments, but any other function
can be used that maps a vector to a single real number by
obeying the above requirement. The L0 norm was used in our
previous work [1].

2) Aligning Key: Similarly as with the retrieval key, we
introduce the aligning key w ∈ RNA as another sub-descriptor
of the SCD, which is a vector whose dimension is equal to
the number of SCD columns NA. Although no requirement is
needed for the aligning key, we adopted the same L1 norm
when summarizing a column.

V. THREE-STAGE PLACE RECOGNITION

Our place recognition algorithm consists of three parts: (i)
place retrieval using a retrieval key, (ii) semi-metric localiza-
tion via pre-alignment using an aligning key, and (iii) full SCD
comparison for potential refinement and localization-quality
assessment.

A. Place Retrieval using a Retrieval Key

Existing widely adopted solutions leveraged past trajectory
or motion uncertainties to reduce the search space [29, 31].
Differing from them, we pursue global localization without
prior knowledge. We solely rely on the descriptor itself while
minimizing computational costs from global search by intro-
ducing sub-descriptors.

Using all extracted retrieval keys in the map, we construct a
k-d tree for fast search and retrieve the closest place in terms of
the retrieval key. Potentially, the top k candidate indexes then
may be retrieved to be verified at the full SCD comparison
phase. Interestingly, we empirically found that using only
the best candidate (k = 1) yields meaningful performance,
outperforming the case using multiple candidates. A discussion
on the candidate set size (k) will be presented in §VIII-B.
As a result of the tree search, we topologically retrieve the
corresponding map place for the query.

B. Semi-metric Localization using an Aligning Key

Given a retrieved candidate place, the typical SLAM frame-
work would proceed to metric-level localization by finding the
relative pose between the query and candidate place recog-
nized by the place retrieval module. Well-known approaches
would include ICP and its variants, which compare two
scans to find the optimal pose, minimizing an alignment cost.
Despite their popularity, these metric localization methods may
suffer local minima and required a good initial guess.

In the second phase of our place recognition algorithm, we
exploit the aligning key and determine the partial relative pose
through the pre-aligning phase. The naive brute-force version
of the alignment (3) is computationally proportional to the
number of columns NA, which is heavier than the simple and
frequently used L2 norm. We propose conducting brute-force
aligning by using query and target aligning keys, instead of
using the full SCDs. The pre-alignment using the aligning key
procedure is formalized as

n̂∗ = argmin
n∈[Ninv]

dw(wQ,n,wM ) , (4)

where n̂∗ is the estimated shift for the best alignment between
the query and target SCDs. We simply propose using dw as
the L2 distance between two vectors. This computed column
shift n̂∗ can serve as a good initial value for further localization
refinement such as ICP. The evaluation of this initial guess is
given in §VII-E.

C. Full Descriptor-based False Positive Rejection

The final step of place recognition is to compare the full
SCD to reject the potential false positive. As will be shown
in §VIII-B, using a full descriptor may deteriorate the spatial
discernibility. Using the previously computed initial column
shift n̂∗, the original search space in (3) is shrinked to only
the neighborhood N ( · ) of the pre-aligned shift n̂∗.

D(fQ, fM ) = min
n∈N (n̂∗)

d(fQ,n, fM ) , (5)

This reduced search space may be insecure when the variation
over columns is poor, when the upper vertical FOV is low
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(a) Rot + Lat revisit (b) Polar Context Augmentation (c) Cart Context Augmentation

Fig. 5. Illustration of the SCD augmentation in §V-D. (a) The sample from Oxford 2019-01-15-13-06-37 shows the revisit case with both rotational
and translational change. (b) Polar Context augmentation includes explicit re-calculation of the descriptor by changing the vehicle’s center pose. The original
(red) pose based descriptor shows a larger distance than the shifted pose-based descriptor does. Only a sinlge virtual vehicle case is shown for visualization.
Please be noted PC can recognize a place even under viewpoint changes (i.e., switched colored boxes in Fig. 5(b)). (c) Cart Context augmentation consists
of simple sequential flips. Similarly, as in PC, the augmented descriptor shows a closer distance to the map than the original descriptor.

[12] when our maximum height bin encoding function hardly
makes a diversified distribution. This can be overcome by
developing a more discerning bin encoding function. However,
as will be shown in experiments (see §VII), we found that even
an extremely tight choice of neighbor, N (n̂∗) = {n̂∗} (i.e.,
assuming the pre-aligning as the best alignment) is empirically
enough and outperforms other methods.

Finally, we go over the k candidates proposed by the k-d tree
and search for candidates satisfying an acceptance threshold
to select it as the revisited place.

c∗ = argmin
ck∈C

D(fQ, fckM ), s.t D < τ , (6)

where C is the candidate index set extracted from the k-d
tree, τ is the acceptance threshold, and c∗ is the index of the
recognized place. Because we use k = 1, this full descriptor
similarity score performs as the validity check to confirm that
D < τ before accepting the candidate as the correct match.

D. Augmentation of the Scan Context Descriptor

Because we construct a descriptor from the BEV, the
dominant motion complexity is reduced to 3-degree of freedom
(DOF) which is then summarized in a 2D descriptor. This
indicate that both descriptors are deficient in certain DOF.
For example, PC is written in the polar coordinates and
loses the translational component; CC is described in the
Cartesian coordinates and lacks the rotational component. This
deficiency is critical when revisit occurs in a combined motion.
A typical example would be revisiting in a reversed route from
the opposite lane. To overcome this limitation and impose
robustness along the fixed axis, we created virtual SCDs to
augment a place, thereby achieving pseudo-invariance along
the deficient direction.

1) Augmented PC (A-PC): We aimed to cover lane changes
(2 m spaced lanes) and a reversed route (180◦ heading
change). During this augmentation process, a PC is synthet-
ically duplicated by assuming virtual lateral displacement.
Our particular interest is lane change, and we synthetically

considered two virtual vehicle positions that are laterally 2 m
apart. Two additional Augmented Polar Context (A-PC)s are
generated with respect to these virtual vehicle poses and root-
shifted point clouds. This root shifting is the same way as in
our previous work [1].

2) Augmented CC (A-CC): For CC, the augmentation is as
simple as a double flip on both axes. The lacking rotational
component should encompass lane changes, and we flip the
descriptor on both axes to create the Augmented Cart Context
(A-CC).

Both the A-PC and the A-CC are illustrated in Fig. 5. The
augmented descriptors’ place index is assigned as identical
to its original one. For matching, empirically, we found
maintaining a single k-d tree containing both original and
augmented keys outperforms using multiple k-d trees.

E. Computational Complexity

Among all of the introduced modules, the neighbor search
is the most computationally demanding. Tree construction
consumes periodic resources and the add-on augmentation
step requires increased time computation proportional to the
number of the augmentations. As will be shown in §VII-G,
the number of augmentations and periodic tree maintenance
are negligible. Even the main computational bottleneck of the
retrieval module is extremely lightweight.

Naive descriptor comparison, as described in (2) and (3),
requires the computation of O(NA ·NR ·NA). This cost is
substantially reduced by pre-alignment, as described in (4)
and (5), eliminating linear search through NA elements. The

TABLE II
IMPLEMENTATION DETAILS.

Parameter PC / A-PC CC / A-CC

Down sampling 0.5× 0.5× 0.5m3

ROI ([0 m, 80 m], [0◦, 360◦]) ([−100 m, 100 m], [−40 m, 40 m])
Resolution 20× 60 (4 m, 6◦) 40× 40 (5 m, 2 m)
Candidate # (k) 1
Augmentations # 2 1
Augmentation ±2m root shiftings in the lateral direction double flip
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Fig. 6. The dataset trajectories overlaid on each aerial map. The first column shows KAIST 03 (MulRan) and Riverside 02 (MulRan), followed
by Oxford Radar RobotCar, the Sejong sequence in MulRan, and Pangyo (NAVER LABS). The magenta boxes on the right show the wide roads
in the Pangyo sequence of the NAVER LABS dataset. The total length of each sequence and their characteristics are summarized in Table III.

TABLE III
THE DATASETS’ DETAILS WITH RESPECT TO THE INVARIANCE TAXONOMY IN TABLE I.

Induced variance T R D SV NR FOV

Dataset Sequence Path length (km)
(# revisits / # total)

Avg/Max Speed
(km/h)

Non-same direction Revisits
(ratio) Lane Changes Dyn Objs Inter-session Sensor

(# rays)
HFOV

(◦)

KITTI
00 3.71 (852 / 4541) 28.5 / 47.9 Y (3%, 22 / 852) N F N 64 Full

08 3.21 (102 / 2377) 27.5 / 46.7 Y (100%, 102 / 102) F F N 64 Full

MulRan

KAIST 03 6.25 (2055 / 4224) 26.3 / 54.4 N (0%, 0 / 2055) N F N 64 290

Riverside 02 6.61 (2174 / 4870) 35.6 / 66.6 N (0%, 0 / 2174) FFF FFF N 64 290

Sejong 02 to Sejong 01 23.16 (17907 / 18090) 40.0 / 67.4 N (0%, 0 / 17907) FF FF Y 64 290

Oxford
Radar RobotCar

2019-01-11-13-24-51 9.93 (2117 / 8192) 24.4 / 42.2 Y (43%, 901 / 2117) F FF N 32 Full

2019-01-15-13-06-37
to 2019-01-11-13-24-51 8.89 (7391 / 7391) 25.1 / 50.8 N (0%, 0 / 7391) F FF Y 32 Full

NAVER LABS Pangyo 31.37 (7025 / 21648) 23.8 / 41.5 Y (29%, 2021/7025) FFF FFF N 32 Full

reduced computational cost becomes O(NA ·NR · 1). Approx-
imating NA ∼ NR ∼ N , this reduction can be regarded
as a reduction from O(N3) to O(N2) with the descriptor
dimension N . For example, the CC in Fig. 3(b) is a square
matrix with the format NA = NR = N .

F. Implementation Details

The used parameters are listed as in Table II. Here, ROI
and grid size determines the resolution. For example, 20× 60
for PC indicates 80/20 = 4 m and 360/60 = 6◦ resolution.
Similarly, 40 × 40 for CC indicates 200/40 = 5 m and
80/40 = 2 m resolution, for the R-axis and the A-axis,
respectively. The discussion on parameter selection will be
given in §VIII.

VI. DATASET AND EVALUATION CRITERIA

For the evaluation, we chose trajectories to cover broad re-
visit types including rotation and lateral changes. We describe
the datasets and evaluation criteria below.

A. Datasets

In total, eight sequences were selected from four
publicly available datasets covering diverse environments:
KITTI Odometry [12], MulRan [34], Oxford Radar
RobotCar [33], and NAVER LABS1 datasets. The detailed

1https://hdmap.naverlabs.com/ and https://challenge.naverlabs.com/

characteristics of each sequence and the environment will be
provided in the following subsections. The overlaid trajectories
on the aerial map, as shown in Fig. 6, illustrate the trajectory
shape, scale, and surrounding environments (excluded well-
known KITTI sequences). The details of the four datasets
are summarized in Table III.

1) KITTI: KITTI Odometry2 [12] is the most widely used
dataset for LiDAR place recognition [25, 29, 32, 30, 31].
This dataset provides 64-ray LiDAR scans (Velodyne HDL-
64E) We selected two sequences, 00 and 08, with a sufficient
number of loops. Note that sequence 08 is only composed of
reverse loops.

2) MulRan: The Multimodal Range Dataset (MulRan) [34]
was specifically designed to support place recognition eval-
uation and contains a large number of loop events. This
dataset provides 64-ray LiDAR scans (Ouster OS1-64) in 12
sequences covering a campus for a planned city. We chose
three sequences: KAIST, Riverside, and Sejong.
KAIST 03 is a campus environment with few dynamic

objects and multiple well-distributed buildings. Riverside
02 involves travel on roads along the riverside. This sequence
includes few surrounding structures and many perceptually
similar unstructured objects such as roadside trees, which are
frequently repeated throughout the sequence. More critically,
this sequence has multiple lane changes at the revisit phase
(the blue parts in Fig. 10(d)), which enable us to quantitatively

2http://www.cvlibs.net/datasets/kitti/eval odometry.php
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assess the methods’ robustness under lateral changes. The third
environment in MulRan, the Sejong sequence, encompasses
the long circular route of a master-planned city called Sejong
[43]. As a planned city, its environment reveals slowly varying
structural changes even within a relatively short period of time.
We chose Sejong 01 and Sejong 02 and examined the
multi-session loop-closure capability and the robustness over
a temporal gap (between June 2019 and August 2019).

3) Oxford Radar RobotCar: The Oxford Radar
Robot Car [33] dataset, which we simply call Oxford, is
a radar extension of the Oxford RobotCar dataset [44]. This
extension provides range data from a FMCW radar and two
32-ray 3D LiDARs (Velodyne HDL-32E) mounted at the left
and right sides of the radar. For each place, we constructed a
single point cloud by concatenating scans from the left and
right LiDARs (their center is a new sensor coordinate) and
used this newly generated scan for the evaluation. The sites
of Oxford mostly have a maximum of two lanes and no
expected heavy lateral displacement. Instead, the sequence
contained reverse revisits occurring simultaneously with
small lane changes (i.e., the red places in Fig. 12(a)). This
dataset enabled us to evaluate the robustness to concurrent
rotation-and-lateral changes.

Among the repeatedly recorded sequences over the same
site, we selected two sequences (2019-01-11-13-24-51
and 2019-01-15-13-06-37) whose INS and GPS sig-
nals were secured over the entire trajectory. The sequence
2019-01-11-13-24-51 was used for a intra-session
place recognition validation as shown in Fig. 12. The
selected sequences were also used to validate the inter-
session place recognition performance, which is named
2019-01-15-13-06-37 to 2019-01-11-13-24-51
and is visualized in Fig. 15(a). We can see all global relocal-
izations (i.e., revisits) arose within the same direction.

4) NAVER LABS: The last evaluation sequence is a long
single trajectory through highly urbanized environments,
named Pangyo, from the NAVER LABS dataset3 made by
NAVER LABS. The long 31 km sequence includes tall build-
ings, wide roads (the magenta boxes in Fig. 6), and multiple
revisits per place. More than half of the same-direction-revisits
occurred in different lanes accompanied by rotation changes.
We used Pangyo to validate a method’s comprehensive
performance and scalability.

B. Correctness Criteria

The measure of the each place strongly depends on the
applications and the target environment (e.g., indoors or out-
doors). In this evaluation, we aimed to include changes of
up to three lane (approximately 8 m), which frequently occur
in complex urban sites. By doing so, the robot recognizes
a place even when revisiting occurs at a laterally separated
location. Secondly, in SLAM applications, coarse global loop
detection typically followed by the pose regression module,
generates a metric constraint between the query and the map.
If the loop candidate is detected too broadly (e.g., 25 m in
[36]), then the accompanied fine localization module may fail.

3https://hdmap.naverlabs.com/ and https://challenge.naverlabs.com/

Relative translation 
at a revisit (m)

Relative rotation 
at a revisit (deg)

(a) Trajectory and loop-closure event distribution

# of detected loops: 40% # of detected loops: 28% # of detected loops: 40%

KL-D = 2.66 KL-D = 0.26 KL-D = 0.09

(b) Simulation cases and their detected loops and KL-D

Fig. 7. (a) True distribution of the loop-closures seen in a perspective view
(left) and a top-down view (right). The grid size used in the visualization
is (0.5 m, 10 ◦). The loop-closure events are majorly grouped into two. (b)
three sample algorithms showing different detected event distributions.

Considering these two aspects, we count the detected place as
correct if a query place and a detected loop candidate place are
less than 8 m apart. We prepared 1−1.5m equidistant sampled
measurements to avoid redundant frames during stop sections
and to enable each place to contribute the same. The numbers
of nodes for each sequence used for the evaluation are reported
in Table III.

C. Evaluation Metrics

1) Precision-Recall Curve: We used the precision-recall
curve as a main evaluation metric [6]. As argued in [6], for
a place recognition system, increasing potential matches is
important, even if a few false predictions occur [45]. We also
examined the maximum F1 score [46], the harmonic mean of
precision and recall, as our evaluation metric.

2) Recall Distribution: We would like to note that the
precision-recall curve may not fully reveal the performance
toward loop-closure in a SLAM framework. The spatial and
temporal distributions of the loop-closure are essential for the
SLAM, while the precision-recall curve could be limited to
measuring the distribution of place recognition. Not all recalls
should be credited equally from the point of view of SLAM
loop-closure. To value more distributed loop detections, we
formulated the true revisits as the reference loop distribution
and measuring Kullback–Leibler (KL) divergence against it.

As illustrated in Fig. 7(a), we constructed a histogram of
the loop-closure event with respect to the translational and
rotational variance between a nearest one in a map and a
query pose. The sample revisit events collected from Oxford
2019-01-15-13-06-37 contains two major groups. In this
toy example, we simulated three algorithms showing different
recall distributions and measured KL divergence with respect
to the ground-truth recall distribution. In Fig. 7(b), few loop-
closures are found from the group 2 for the leftmost case. The
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(a) Revisit distribution (KITTI 00)
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(c) Revisit distribution (KAIST 03)
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Fig. 8. (Left) The marked trajectories of the revisited places, (middle)
the true revisit distributions, and (right) the PR curves. In (a) and (c), the
trajectories are color-coded by revisit types. Most of the loop-closure events
are concentrated in the lower-left of the true-revisit distribution, revealing
small rotational and translational variance. This concentrated distribution is
depicted as a single peak in the perspective view.

other two showed better distributed loop-closure detections
with respect to the internal factor variation, providing spatially
unbiased localization performance. Even with smaller revisit
detection, the middle case yielded better distribution showing
lower KL-D value. During the evaluation, we show arrows
to indicate that higher precision (↑), higher F1 score (↑), and
lower KL-D (↓) imply better performance.

Potentially, the Wasserstein distance (a.k.a. the earth
mover’s distance) or Jensen–Shannon Divergence could be the
measure to use as also discussed in detail in [47]. However, we
chose to use KL-D because we need to compare the relative
distance between methods while having the GT distribution as
the reference. Measuring relative information is favored over
the symmetry. Here, we used the ground-truth loop-closure as
the reference distribution and measure relative entropy against
this reference.

D. Comparison Targets

We compared the proposed methods against two other
methods: M2DP and SegMatch. All of the comparison targets
are agnostic to sensor type (e.g., ray numbers) and run on
CPU.

1) SCD: We present the performance of PC [1], CC, A-PC,
and A-CC. For the proposed methods, we only retrieved a
single candidate from the k-d tree (k = 1). Downsample point
cloud using a 0.5 m3 voxel is used to make a SCD (Table II).
The evaluation curves were acquired by changing the threshold
of the SCD distance.

2) M2DP: Identical to our methods, M2DP [25] only
requires a point cloud from a single scan as an input. We

(a) SegMatch

(b) PC
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Fig. 9. (a)-(b) Matched pairs (green) for KITTI 00 at maximum precision in
Fig. 8(b). (c) The distribution-recall curve, named DR curve, in terms of KL
divergence with respect to the recall rate. Ideally, a flat curve with constant 0
KL divergence for all recall rates would indicate perfectly distributed recalls.
A lower score in the DR curve indicates better performance (↓). In this DR
curve, CC, PC, and M2DP all showed low KD divergence scores for all recall
rates, which gradually decayed as recall increased. SegMatch detected sparse
loop-closures, and the recall was lower than of the other methods. This appears
as a larger KL divergence at low recall. However, the KD divergence decreased
dramatically and reached a similar level of other methods. This indicates that
SegMatch proposed more efficient loop-closures, achieving similar distribution
score (i.e., KL divergence) with a smaller number of detections.

followed the code and the parameters provided4, with one
difference. We empirically found that applying 0.1 m cubic
voxel downsampling a priori boosts M2DP’s performance, and
we made this modification to secure better performance. The
query descriptor is compared to all of the map descriptors in
terms of Euclidean distance, which was used as a threshold.

3) SegMatch: Among the three options in SegMatch [29],
we used the eigenvalue to describe a segment, which is the
same as the author’s configuration designed for the KITTI
dataset. We excluded the learning-based version, SegMap [28],
because our method works on CPU and for a fair comparison.
The evaluation curves for SegMatch are acquired by changing
the segment feature distance threshold. Unlike the other global
localization methods (ours and M2DP), SegMatch requires
odometry information. During the evaluation, we leverage
ground-truth to provide odometry. As will be seen, despite the
exploitation of highly accurate odometry, SegMatch failed to
overcome severe variance, while our method reliably localized
without requiring any geometric prior. Not being a global
descriptor as M2DP and SCD are, SegMatch only had a short
range in its PR and DR curve. This is because the parameters
in SegMatch are tuned to local segmentation and do not
substantially affecting recall.

VII. EXPERIMENTAL EVALUATION

Next, we validated our spatial descriptor and place recogni-
tion algorithm on various datasets. As addressed in Fig. 1 and
Table I, coping with multiple variations of a place is crucial
for loop detection and global localization. To clearly state the
associated invariance, we color-coded routes depending on the
revisit types.

4https://github.com/LiHeUA/M2DP
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(a) Trajectory and revisit distribution
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(d) Trajectory and revisit distribution
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Fig. 10. Two sequences showing either predominantly rotational or lateral variance. (a) Most of the revisits occurred in the reversed direction for KITTI
08, with a concentrated distribution on the upper-left quadrant. (b)-(c) PC is the most robust method for KITTI 08. (d) MulRan Riverside 02 contains
lateral variations with little rotational change. (e)-(f) CC is better capable of handling lateral variations. Higher precision (↑) and lower distribution (↓) for all
recalls indicate better performance.

Fig. 11. Time-elevation plots with true/false matches visualization for Riverside 02. We plotted correct (green) and incorrect (red) matches at the
maximum precision (100% for all methods) and the maximum F1 score. The solid blue box indicates the area with challenging multiple lane changes with
repeated trees. The dotted blue box is the featureless bridge environment crossing a river. CC successfully found loops at those regions, while M2DP proposed
many incorrect matches, and PC did not find loop-closures in these regions.

A. Revisit with Small Variance

Among the eight sequences in Table III, KITTI 00 and
MulRan KAIST 03 are relative easy sequences, containing
small rotational/translation variance and few dynamic objects.
For KITTI 00 (Fig. 8(b)), M2DP showed the highest per-
formance with respect to both precision and recall. SegMatch

revealed quite lower recall compared to the others; however,
the distribution of the recognition was sufficient to construct
a globally consistent map. In particular, SegMatch success-
fully recognized the loop at the middle crossroad, where a
composite change (both rotational and lateral) existed (see
Fig. 9(a)), while the other methods failed to do so. Both
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(a) Trajectory and revisit distribution
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Fig. 12. (a) Oxford 2019-01-11-13-24-51 revealed concurrent rotational and lateral variance. The trajectory is color-coded by variance types. The
true revisit distribution shows reversed revisits with lane changes. In addition to the PR and DR curves, we show the F1-R curve, which shows the change
of F1 score with respect to the recall. (b)-(d) From the DR curve, we can easily see that augmentation not only increases the number of recalls with higher
precision, but also increases the diversity of loop conditions.

(a) M2DP (b) PC (c) CC (d) A-PC (e) A-CC

Fig. 13. Time-elevation match graph for Oxford 2019-01-11-13-24-51. Both true and false loop detections at recall of 50% are visualized. The black
line is the sequence trajectory whose height represents the time. The falsely connected matches are red, the true matches at easy revisit are green, and the
true matches at revisit with variance are drawn as green (bold).
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(e) DR curve (Easy)
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(f) DR curve (Lat)
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(g) DR curve (Rot)
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Fig. 14. (a) Trajectory color-coded by variance types. Unlike other sequences, Pangyo includes all types of variance. Each quadrant indicates easy (Q1),
lateral-dominant (Q2), rotational-dominant (Q3), and composite (Q4) cases. For the sequence, (b) PR curve, (c) F1-R curve, and (d) DR curve are given. On
the bottom row, we examine a detailed view for each quadrant from the top-down view of the revisit distribution. Each quadrant represents the predominant
group of revisits in one type of variance.

PC and CC showed similar performance because KITTI 00
barely has any rotations or lane changes at the loops. The PC
matched pairs at the 100% precision are visualized in Fig. 9(b).
In MulRan KAIST 03 (Fig. 8(d)), all of the methods suc-

cessfully recognized the loops because this sequence is for
a campus environment with almost no lane changes and few
dynamic objects.
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B. Revisit with Rotational or Lateral Variance

Next, we examined sequences showing dominant variance
in either the rotational or lateral direction. Their performance
is summarized in Fig. 10.

1) KITTI 08: This sequence only contains reverse re-
visits, with half of them further including simultaneous lane
change. This appears as the concentrated distribution of revisit
events in Fig. 10(a). M2DP and CC failed due to the severe
rotational variance while PC showed substantially better pre-
cision. SegMatch yielded enough precision, but the recall is
limited. For this sequence with rotational variance, we exam-
ined the A-CC to see the improvement of the augmentation.

2) MulRan Riverside 02: In this sequence, the ve-
hicle revisits a place with multiple lane changes but in the
same direction. This variance is clearly captured in Fig. 10(d).
In terms of precision-recall, CC outperformed the others
techniques by large margin (Fig. 10(e)). The time-elevation
graph in Fig. 11 shows true/false matches for the sequence. CC
outperformed the others in challenging regions with few false
positives (red), which can potentially be treated using existing
robust back-ends [45, 48, 49]. As with the improvement of
A-CC in KITTI 08, the augmentation (A-PC) improved the
PC under lateral variance.

C. Concurrent Rotational and Lateral Variance

The more complex case includes concurrent rotational and
lateral variance. We used Oxford and Pangyo to eval-
uate performance under composite variance. We excluded
SegMatch for the composite cases because of their high
dependency on odometry. Enhancing other prior modules for
place recognition is beyond the scope of this paper.

1) Oxford: As shown in Fig. 12, the performances of the
original PC and CC without augmentation are steeply limited
at a certain recall, even with increased thresholds. Interest-
ingly, the unrecognized recalls at this steep point matched the
ratio of non-same direction revisits (43 %) shown in Table III.
Applying associated augmentation to PC and CC showed
improved precisions at the higer recalls, with large margins for
both descriptors. Overall, the A-CC generally showed higher
precision than the A-PC did. In Fig. 13, true/false matches for
each method are visualized. For a fair comparison, we pinned
the recall at 50% for all methods to measure each method’s
accuracy and effectiveness quantitatively.

Note the importance of the distribution shown in Fig. 12.
According to this plot, CC outperforms PC in terms of
precision and maximum F1 score, except for the distribution
score. This indicates that the increased precision of CC is
concentrated in easy regions, while PC can detect difficult
loops that may critically contribute to SLAM performance
(see Fig. 13(b)). However, the restricted performance of CC
was alleviated by A-CC, as can be seen in the improved
distribution score as shown in Fig. 12(d). This improvement
is also depicted in Fig. 13(e), in which A-CC detects well-
distributed loop-closures.

2) NAVER LABS Pangyo: This Pangyo sequence in-
cludes sporadic lane changes during revisits, accompanied by
rotational change. This composite variance (both rotational
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Fig. 15. Loop-closure detection under multi-session scenarios. (Top) A pair
from the Oxford dataset and (bottom) a pair from the Sejong of MulRan
dataset were used. The revisits mostly had lateral changes. Single peak in
Fig. 15(b) and double peaks in Fig. 15(e) describes the number of laterally
displaced revisits in each sequence.

(a) M2DP (b) Polar Context (c) Cart Context

Fig. 16. Inter-session place recognition visualization registering the query
sequence (Sejong 02) to the map sequence (Sejong 01). A set of true
(green)/false (red) loop detection results at recall of 50% are visualized. The
black line is the sequence trajectory whose height represents the time. The
performance during severe lane change (blue in Fig. 15(d)) is of interest. Only
CC had green matches even under major lateral variance while suppressing
perceptual aliasing (red lines).

and lateral) is inevitable in an urban environment when the
reverse route necessarily involves a lane change. The Pangyo
sequence encompasses abundant types of variance as can be
seen in Fig. 14. Overall, augmentation yielded substantial
improvement when the revisit underwent composite variance.
A-PC showed the best performance for rotational change
(Fig. 14(g)) and M2DP was meaningful for lateral variance.
However, under concurrent rotational and lateral variance, A-
CC proved its validity over other methods.

D. Multi-session Capability

So far, we have investigated revisits within a single session.
Here, we consider place recognition in multi-session scenarios
toward long-term autonomy. To validate our methods in multi-
session scenarios, we chose two sequences from a dataset with
sufficient temporal differences.

The first pair was Oxford 2019-01-15-13-06-37
to Oxford 2019-01-11-13-24-51. We used Oxford
2019-01-11-13-24-51 as a map and tested the loop-
closure performance of Oxford 2019-01-15-13-06-37
as a query sequence. Another pair used for testing multi-
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Fig. 17. Semi-metric localization at max F1 score on Pangyo sequence. (a) and (c) Relative 1D pose estimation via aligning key matching. Relative rotation
(A-PC) and lateral translation (A-CC) are depicted in blue while the red line indicates the true relative displacement obtained from the ground truth. Error is
illustrated in green below the estimation plot. (b) and (d), plotting RMSE between relative pose after ICP and ground truth against the scan context descriptor
distance reveals correlation.

session loop-closure showed a larger temporal gap of two
months. We chose Sejong 01 in the MulRan dataset as
a map using Sejong 02 as a query.

As can be seen in Fig. 15, these revisits mostly included
lateral variance but with a temporal gap. For the Oxford
pair, all of the methods successfully detected loops. The
Sejong pair was more challenging because the lateral change
included multiple lane changes. The loop-closure results for
the Sejong pair are further visualized in Fig. 16. M2DP
seemed to show meaningful performance but included wrong
loop-closures. CC the showed best performance for the multi-
session scenarios. Obvious improvements could be made via
augmentation, although this was excluded from the multi-
session scenarios.

E. Metric Localization Evaluation and Quality Assessment

Together with the retrieved place, the proposed method is
capable of estimating the relative 1D pose between query
and map places. This is important when the topological place
retrieval is combined with the metric localization because this
initial estimate can be exploited in further metric refinement.

From the aligning key registration, we estimate a 1D relative
pose (i.e., rotation for PC and lateral displacement for CC).
Using the ground truth pose provided in Pangyo sequence,
we plot the estimated 1D relative pose against the true relative
pose from the ground truth. As can be seen in Fig. 17(a) and
Fig. 17(c), the estimation yielded a meaningful relative pose
inference of 1.03◦ for A-PC and 0.84 m for A-CC on average.

We can further examine the quality of this metric lo-
calization using the full descriptor similarity score. In the
proposed method, we utilized this similarity score as the

second barometer to exclude the retrieval with large SCD
distance (i.e., small similarity). To assess the metric evaluation
quality, we present a scatter plot between the RMSE of the
relative estimation from ICP and the SCD distance in Fig. 17.

F. External Module Dependence and SLAM Integration

Being lightweight and independent to an external module
would be needed in a global localizer. We aimed to develop a
stand-alone module without requiring prior information such
as odometry. During evaluation, we found that SegMatch’s
place recognition performance is affected by the odometry
quality. We also empirically discovered that the SegMatch
hardly made recalls for harsh environments such as the
Riverside 02 (MulRan) sequence when a good quality
of frame-to-frame odometry barely obtainable due to many
dynamic objects. In the previous evaluations, although we
fed the ground truth as the odometry to ensure their best
performance, the performance was restricted for less structured
and repeated environments.

The proposed implementation is lightweight provided in a
single C++ and header file pair. Thus, ours is easy to combine

TABLE IV
ATES (MEAN / MAX) OF ODOMETRY AND SCAN CONTEXT INTEGRATED

SLAM SYSTEM.

KAIST 03 Riverside 02

Methods Trans. (m) Rot. (deg) Trans. (m) Rot. (deg)

LeGO-LOAM 20.7 / 42.7 4.9 / 9.9 47.7 / 130.5 6.9 / 12.8
SC-LeGO-LOAM 3.4 / 8.8 2.2 / 8.2 15.2 / 50.5 4.2 / 8.7
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with any keyframe-based pose-graph SLAM system because
the Scan Context-based place recognition’s atomic element is
a single keyframe measurement. Along our open source place
recognition module5, we also made a real-time LiDAR SLAM
system publicly available. It is written in C++ and named
SC-LeGO-LOAM6 integrated with LeGO-LOAM [50]. As in
Table IV, the Scan Context-based loop detection and pose-
graph optimization with iSAM2 [51] successfully alleviated
the odometry trajectory’s drifts. For a detailed demonstration,
we refer to the attached multimedia file.

G. Computational Cost

The proposed place descriptor generation and recognition
modules are both fast. The per module computational costs
are visualized in Fig. 18 for two sequences. PC’s computation
costs are reported in Fig. 18 because the computational costs
for PC and CC are almost the same under a similar resolu-
tion and only the coordinate selections differed. These time
consumptions are measured while running the Scan Context
integrated real-time LiDAR SLAM (§VII-E) on Intel i9-9900
CPU (3.10GHz) and 64G RAM.

As can be seen in Fig. 18(b), the mean computational time
is less than 10 ms. The most time consuming task is the
k-d tree reconstruction, which is performed periodically in
batches. However, a graph plots the conservative case when
we repeatedly rebuild the tree every other 10 secs. This could
be elongated depending on the application to reduce the total
cost and is not even required for the multisession scenario.

The mean execution time is even shorter at Pangyo despite
its large scale because Pangyo used 32-ray LiDAR with fewer
points than KITTI 00. This also indicates that the overall
computational complexity is O(1) though periodic batch tree
rebuilding scales linearly with the map O(N), with N being
the number of nodes in the map.
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Fig. 18. Computational time visualization per module when tested over
KITTI00 and Pangyo. Conservative batch tree update every other 10
seconds was performed.

5https://github.com/gisbi-kim/scancontext
6https://github.com/gisbi-kim/SC-LeGO-LOAM

The time cost comparisons with the other methods are given
in Table V. The timing for ours and M2DP were measured us-
ing Matlab, while SegMatch was copied from [29]. SegMatch
spent most of its time on segmentation. M2DP was the most
lightweight. A-PC only requires extra description times during
the augmentation phase as no extra costs managing retrieval
keys are needed. Despite requiring GPU (GTX 1080 Ti),
PointNetVLAD (§VIII-E) was more expensive than ours. The
retrievals were fast for M2DP and PointNetVLAD because a
fixed-length vector’s comparison of Euclidean distance is very
lightweight.

TABLE V
TIME COST COMPARISON. ALL UNITS ARE IN MS.

Ours (PC) Ours (A-PC) M2DP SegMatch PointNetVLAD

Desription 1.6 4.8 4.3 430.2 33.3
Retrieval 6.7 6.7 1.5 365.8 0.7

Total 8.3 11.5 5.8 796.0 34.0

VIII. DISCUSSION

Beyond the evaluation of the proposed global localization
method, we provide ablation studies and interpretations.

A. Descriptor Resolution

We examined the descriptor resolution and corresponding
performances. As in Table VI, the lower resolution yielded
better performance. Therefore, we used the baseline resolution
for the following subsections.

TABLE VI
PERFORMANCE COMPARISON WITH RESPECT TO THE DESCRIPTOR

RESOLUTION AT OXFORD 2019-01-11-13-24-51. P: PRECISION, R:
RECALL, D: KL-D AT F1 MAX. THE BASELINE RESOLUTION IS MARKED

WITH *.

Polar Context (PC) Cart Context (CC)

Resolution P (↑) R (↑) D (↓) Resolution P (↑) R (↑) D (↓)

10×30 0.65 0.41 0.56 40×20 0.94 0.50 0.62(8 m, 12◦) (5 m, 4 m)
20×60* 0.81 0.47 0.58 40×40* 0.93 0.53 0.60(4 m, 6◦) (5 m, 2 m)
20×120 0.76 0.50 0.57 40×60 0.90 0.52 0.61(4 m, 3◦) (5 m, 1.3 m)
40×60 0.77 0.50 0.58 60×40 0.92 0.52 0.60(2 m, 6◦) (3.3 m, 2 m)

40×120 0.76 0.50 0.59 80×80 0.92 0.51 0.61(2 m, 3◦) (2.5 m, 1 m)
60×180 0.74 0.49 0.61 120×120 0.91 0.52 0.60(1.3 m, 2◦) (1.6 m, 0.6 m)

B. Analysis on Retrieval key Performance

Candidate numbers. In §V-A, we leveraged the k-d tree to
propose k candidates for retrieval and only a single answer is
selected after the full descriptor-based false positive rejection
(§V-C). In this subsection, we examine the effect of k on
performance. We first note that the increase in k does not
mean to relax the success criteria, but rather the number of
candidates in the first step of our algorithm. Interestingly,
as in Table VII, all statistics outperformed others when we
only chose the best candidate. The full descriptor may suffer
confusion showing the best performance at k = 1. Though this
may seem contrary to a general belief for better performance
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under more candidates, the result indicates the reduced spatial
discernibility of the full descriptor. Based on this investigation,
we used k = 1 for all experiments conducted earlier.

TABLE VII
PERFORMANCE COMPARISON WITH RESPECT TO THE NUMBER OF FIRST

STAGE’S CANDIDATES AT OXFORD 2019-01-11-13-24-51. P:
PRECISION, R: RECALL, D: KL-D AT F1 MAX. THE BASELINE

RESOLUTION IS MARKED WITH *.

Polar Context (PC) Cart Context (CC)

K P (↑) R (↑) D (↓) P (↑) R (↑) D (↓)

1* 0.81 0.48 0.58 0.93 0.53 0.60
10 0.76 0.49 0.60 0.87 0.51 0.61
50 0.72 0.49 0.59 0.76 0.51 0.61
100 0.71 0.49 0.59 0.70 0.49 0.62

Retrieval key vs. full descriptor brute-force search.
Additionally, we analyzed how the performance varies if an
entire database is compared (i.e., brute-force) using the full
descriptor-based distance (5). Through the multiple tests in
Table VIII, the performance difference between the retrieval
key-based and the brute-force search is negligible although
the brute-force search requires heavier computations following
O(n) (e.g., almost 1 second for 4500 frames of KITTI 00).

TABLE VIII
FULL DESCRIPTOR SIMILARITY (BRUTE-FORCE SEARCH) AND RETRIEVAL

KEY COMPARISON. THE MEASURE IS AN AREA UNDER A
PRECISION-RECALL CURVE (AUC).

Polar Context (PC) Cart Context (CC)

Sequences Retrieval key Full descriptor Retrieval key Full descriptor

KITTI 00 0.84 0.85 0.80 0.34
KAIST 03 0.99 0.99 0.99 0.99
Riverside 02 0.72 0.74 0.88 0.84
KITTI 08 0.55 0.46 0.00 0.00

Full descriptor’s effect. Nevertheless the confusion of
the full descriptor-based similarity proven in Table VII, this
additional similarity validation enhanced the precision for the
augmentation cases as well as its semi-metric localization
capability. In Fig. 19, the augmented Scan Context’s precision
was improved by eliminating less accurate matches via the
supplemental similarity verification using a full descriptor.

0 0.2 0.4 0.6 0.8 1
Recall

0

0.2

0.4

0.6

0.8

1

Pr
ec

is
io

n

CC
PC
A-CC
A-PC
Retrieval Key (CC)
Retrieval Key (PC)
Retrieval Key (A-CC)
Retrieval Key (A-PC)

Fig. 19. Effect of the retrieval key in terms of the PR curve (Oxford
2019-01-11-13-24-51). The same SCD is depicted with the same
color. A-CC and A-PC showed improvements when additional full descriptor
similarity was considered.

C. Correctness Criteria
The performance tends to be improved when more tight

criteria are applied as in Table IX. This phenomenon oc-

curred because laterally displaced queries, which are generally
difficult to recognize, are considered as correct rejections
when they are missed. However, precise localization was more
difficult in reversed revisits (i.e., KITTI 08 in Table IX)
because the previously correctly recognized queries (e.g.,
within 4 m−8 m) are considered false alarms. From these
findings, 8 m was used for the criteria of correctly recognized
places during our main evaluations in §VII and the ablations
in §VIII to successfully cope with laterally translated revisits.
Even if a place is recognized from a slightly distant place
(e.g., 4 m−8 m apart), the proposed method can close a loop
successfully because it provides a semi-metric localization
result.

TABLE IX
PERFORMANCES (AUC) WITH RESPECT TO CORRECTNESS THRESHOLD.

THE BASELINE(*) THRESHOLD IS 8 m.

Polar Context (PC) Cart Context (CC)

Sequences 8 m* 4 m 2 m 1 m 8 m* 4 m 2 m 1 m

KITTI 00 0.84 0.88 0.91 0.94 0.81 0.85 0.87 0.88
KAIST 03 0.99 0.99 0.99 0.96 0.99 0.99 0.99 0.96
Riverside 02 0.72 0.73 0.79 0.73 0.88 0.89 0.87 0.81
KITTI 08 0.55 0.46 0.38 0.23 0.00 0.01 0.01 0.00

D. Robustness to Roll-Pitch and Height Perturbations

The previously used datasets are mainly from wheeled plat-
forms with little roll-pitch and height perturbations. However,
sensor measurement variation can occur in terms of rotational
and height variations between two scans. In this regard,
we added the additional experiments on roll-pitch perturbed
simulations and a real-world hand-held LiDAR experiment.
We randomly pre-rotated an input scan with respect to both
roll and pitch for the simulation. In the real-world hand-held
LiDAR dataset, the height of the measurement origins varies
slightly while a human navigator walks.

Simulations. The degree of pre-rotations is divided into
three levels: [−5◦, 5◦], [−10◦, 10◦], and [−15◦, 15◦]. The
simulations are conducted for two sequences KAIST 03 and
Riverside 02, and performance losses are clearly ob-
served for all methods. For the KAIST 03 sequence, M2DP
showed smaller performance drops than ours. However, in
Riverside 02, the performance degradations became clear
with respect to the degree of perturbation for all three methods.
We believe that this topic, robust place recognition under
severe roll-pitch variations, has still not been studied much,
and it could be a valuable future academic research topic.

Hand-held data. Second, the result of real-world hand-
held LiDAR data is given in Fig. 20(g). We used KA Urban
Campus 1 sequence provided in LiLi-OM [52], which was
acquired from a slowly walking human navigator. It has the
same direction revisits and narrow front horizontal FOVs
(∼70◦). In this real-world data, ours outperformed M2DP by a
large margin and showed mild (e.g., human walking) roll-pitch
and height perturbations are acceptable. Hence, the proposed
method may not be restricted in wheeled platforms and work
for a hand-held traverse under mild roll-pitch motions.
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Fig. 20. (a)−(f) Perturbation simulation results. (g), (h), (i) A real-world
hand-held LiDAR dataset result, its time-elevated trajectory, and two example
scans.
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Fig. 21. Comparisons with deep learning-based methods, SegMap and
PointNetVLAD.

E. Comparison to Deep learning-based methods

We also provide comparisons to recent deep learning-based
approaches, SegMap [28] and PointNetVLAD [26]7. For both
methods, we used pre-trained weights the authors released.
SegMap revealed hampered performance compared to than
SegMatch. This could be due to the limitation in general-
ization capability over unseen environments. PointNetVLAD
showed comparable performance in the environment under
little rotational and translational variations (i.e., Fig. 21(a)) but
failed when the variation increased (Fig. 21(b) and (Fig. 21(c)),
respectively).

F. Failure Cases

We illustrate sample cases when the proposed method
succeeded and failed to localize against the map. As shown

7For the input processing, we follow [2]. An input is a ground-removed,
zero-centered 4096 points within a [−25 m, 25 m] cubic region.

in Fig. 22(a), the proposed method overcome lateral and/or
rotational discrepancy between map and query scans. The SCD
is successfully localized to the map even with many dynamic
objects (e.g., cars). However, when a tall and large object (e.g,
bus) appears very proximal to the sensor on both query and
map scans, the localization might fail as in Fig. 22(c). The
other failure case was found when the vehicle was moving
along a corridor-like place (Fig. 22(b)).

(a) Successful cases

(b) Failure case: Corridor-like place

(c) Failure case: Occlusion

Fig. 22. (a) Successful examples in Oxford 2019-01-11-13-24-51
acquired by A-PC. (b) Perceptually aliased place from a corridor-like place.
(c) When both query (∼60◦ loss) and map (∼30◦ loss) places undergo severe
occlusions due to a tall and large object nearby (dotted ellipses), a quarter of
the entire scan overlap is lost deteriorating localization capability.

G. Which SCD to Use?

The final question to answer is which SCD to use and in
what case. Based on the evaluation, generally, A-CC yielded
the best performance even under the composite variance (i.e.,
Rot + Lat) as in the case of Oxford (Fig. 12) and Pangyo
(Fig. 14). Therefore, CC and A-CC are more preferred when
the target environment is an urban road. We recommend using
PC or A-PC for more general environments and when semi-
metric localization capability is more critical. Because classic
ICP is much more sensitive to the rotational component of
the initialization, PC would be a better choice despite a
little sacrifice in precisions from CC (but still comparable
performance). For patrolling robots and shuttles that repeat the
same route with minimum variance, PC would exhibit more
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meaningful performance as proved in multi-session scenarios
(Fig. 15).

H. Limitations and Potential Extension

1) Invariance in One Direction: The proposed method is
natively invariant in one direction and we chose rotation and
lateral direction to be invariance axes. This limitation was
overcome by a robust search scheme and augmentation.

2) Leveraging Deep Learning for Scan Context Descriptor:
The proposed descriptor itself is in ordered 2D format, and
inputting this into a deep network is very straightforward. As
reported in [2, 53], the descriptor is learnable and provides
meaningful performance by only using a small network. This
type of approach would particularly be beneficial when GPU
is available and the localization is almost a memorization
problem.

3) Application to Non-urban Environment: The proposed
method is most powerful in an urban environment where
the descriptor can encode the nearby structural variance. The
proposed descriptor is 1-channel with height value but easily
expandable. For example, [42] considered LiDAR intensity
value as an additional channel to successfully operate in an in-
door environment. Combining deep learning with indoor appli-
cation yielded meaningful performance with dense pedestrian
traffic [54]. We think incorporating point cloud distribution or
semantic labels as additional channels would further enhance
the scan context beyond the urban environment such as indoor
and natural environments.

4) Application to Other Range Sensors: The proposed
descriptor is not limited to LiDAR sensors but also applicable
to general range sensors including radars. As we reported a
potential extension to radar sensors in [34], the descriptor can
be applied to radars.

5) Generalizability over measurement variation: Future
studies examining the sensor difference between the mapping
and localization phase would also be meaningful. LiDAR
measurement varies depending on the hardware choice and
mounting configuration. Achieving generalizability over mea-
surement variation would be needed.

IX. CONCLUSION

In this paper, we presented a global place recognition
module combining topological and metric localization. As a
global localizer, the proposed method can be a solution to
a kidnapped robot problem serving as a place recognizer at
a wake-up phase. We also showed the invariance of Scan
Context++ in both the rotational and lateral directions. Via the
evaluation, we validated that the proposed localizer achieved
discriminability and real-time performance without necessitat-
ing prior knowledge.
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