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Abstract— We present a novel static point cloud map con-
struction algorithm, called Removert, for use within dynamic
urban environments. Leaving only static points and excluding
dynamic objects is a critical problem in various robust robot
missions in changing outdoors, and the procedure commonly
contains comparing a query to the noisy map that has dynamic
points. In doing so, however, the estimated discrepancies be-
tween a query scan and the noisy map tend to possess errors
due to imperfect pose estimation, which degrades the static map
quality. To tackle the problem, we propose a multiresolution
range image-based false prediction reverting algorithm. We
first conservatively retain definite static points and iteratively
recover more uncertain static points by enlarging the query-to-
map association window size, which implicitly compensates the
LiDAR motion or registration errors. We validate our method
on the KITTI dataset using SemanticKITTI as ground truth,
and show our method qualitatively competes or outperforms the
human-labeled data (SemanticKITTI) in ambiguous regions.

I. INTRODUCTION

Recent advances in 3D light detection and ranging (LiDAR)
mapping [1, 2] have been reported leveraging LiDAR
odometry [3, 4], place recognition [5, 6], and simultaneous
localization and mapping (SLAM) [7, 8]. The main SLAM
strategy relies on static objects while rejecting dynamic
objects as outliers to avoid confusion and achieve robustness.
This research focus is also found in localization against a
prior map [9] and in map maintenance and updates.

The existence of dynamic objects (e.g., moving cars and
pedestrians) diversifies the structural appearance of the real-
world space; hence, discrimination between dynamic objects
and reliable static objects is not straightforward. This difficulty
yields misclassified 3D points lingering in a constructed
map (e.g., top of Fig. 1). These false static points in the
map may deteriorate the localization [9, 10, 11] and map
maintenance performance. Overcoming this challenge, two
types of approaches are feasible. First, on the query sensor
side, structural-variance-robust place representation [10] and
multiple experience-based [12] methods have been reported,
particularly targeting the localization problem. Another ap-
proach aims at building a clean prior map removing potentially
error pruning dynamic objects from the map. This paper
shares the same philosophy as the latter and focuses on
building a 3D point cloud map containing only the static
components in the environment. Our solution is to determine
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Fig. 1: A before-and-after of the proposed method for the
KITTI dataset [13] sequence 08 around frame 84. Our method
can remove dynamic points representing urban moving
objects that have arbitrary shapes or locations without any
assumptions while preserving static points.

a static-only meta-representation of a place that can support
various applications on the query side.

Static map construction and dynamic object removal are
chicken-and-egg problems due to their interwoven nature.
Given a perfectly static map, discerning dynamic points is
straightforward; if we perfectly distinguish dynamic objects,
then removing them from incoming sensor data readily
constructs a clean map. However, in reality, none of them is
known perfectly. Existing studies [14, 15] have focused on an
iterative state (i.e., static or dynamic) update of map points
by sequentially fusing multiple measurements and checking
visibility between a query scan and a map. This visibility-
based approach needs to find an association between a single
point and a map point. However, because the estimated pose
of LiDAR motion contains an error, this association may be
inaccurate and the possibility of deleting the wrong points
exists. Nevertheless, existing methods assume correct poses



or correct registrations are given [15] or use a fixed size
association rule (e.g., within 1◦) [14].

In this paper, we propose two mechanisms to solve the false
dynamic point removal problem caused by the association
errors resulting from the ambiguity of LiDAR motions. The
first mechanism is a removing-and-reverting algorithm. We
first conservatively retain static points (see the middle of
Fig. 1) and revert falsely removed points. This procedure
processes a batch of measurements and, unlike sequential
Bayesian updates of [14], focuses on the postprocessing role
because our main purpose is to construct a certain length of
static map and to ensure that dynamic points are strongly
erased even if some false negatives occur (i.e., actual static
points are wrongly erased). Therefore, our algorithm first
removes points (except for solidly static points) in batches,
and then reverses them with multiple confidence levels (details
in Fig. 4 and Fig. 9). Second, we provide a mechanism
to handle reverting confidences using multiresolution range
images. This has an effect of the implicit association between
a query and a map point within multiple sizes of search
windows, thus a user can implicitly specify an acceptable
level of LiDAR motion ambiguity and adjust the trade-off
(e.g., between precision and recall) of the predicted static
map’s accuracy.

Because of the combination of the aforementioned two
approaches, we call our method “Remove-then-revert (Re-
movert)”. Our contributions are threefold:
• Range image-based map point discrepancy calculation.

(§III-B and §III-C)
• A novel remove-then-revert mechanism to construct and

enhance a static map (§III-D).
• Multiresolution range image-based static map evolution

to deal with LiDAR motion ambiguities (§III-D).

II. RELATED WORK

A. Dynamic object removal

As mentioned earlier in §I, static map construction is
closely related to dynamic removal. Between online and
offline approaches, we exclude online in this paper because
we are mainly interested in producing a high-quality static
map without concerning the processing speed.

Conventional approaches. The remote-sensing commu-
nity has widely investigated dynamic point removal as
building up a pure environment’s structures is important
to the construction or understanding of the environment. In
general, however, it requires high-cost, dense terrestrial laser
scanning (TLS) point cloud data with accurately aligned poses
to apply in time-consuming voxel ray casting-based methods
[16, 17, 18].

Visibility-based approaches. To alleviate the computa-
tional burden, visibility-based methods have been proposed
[19, 15, 14]. This type of method associates a query point
(or a cluster) and a map point within an almost same narrow
field of view (FOV) (e.g., cone-shaped [14]), then checks
which is located further away and concludes the occluded
points at further sites should be static.

Point cloud segmentation-based approaches. Related
topics also include segmentation-based approaches. Point
cloud segmentation tools have been developed [20, 21]. With
correct segment points with dynamic labels, constructing a
map is straightforward by excluding them [22, 23]. However,
segmentation-based approaches currently rely heavily on
the supervised labels and are vulnerable to human error or
unknown classes [24] without considering the scan-to-map
relationship. This semantic label of a point needs to be fused
as a prior with the visibility-based method.

Solving motion ambiguities. To detect a discrepancy
between a query and a map, we need to register the query
scan correctly to the map. However, perfect registration is
difficult to sustain in the real outdoor environment. Pomerleau
et al. [14] modeled registration uncertainties using normal,
incidence angle, and an overlap ratio from a conic aperture.
However, the model could be incorrect and disturb the in-
tended weights in case of a misregistration of scan. Yoon et al.
[25] proposed to undistort a LiDAR scan for dynamic object
detection, whereas our method can handle the registration
error without the undistortion via implicit associations using
multiscaled range images (Fig. 3 and §III-D).

B. 3D change detection and map update

The key concept of 3D change detection is basically similar
to dynamic object detection; only the level of dynamicity
varies (e.g., dynamic object, nonstationary static object, and
stationary static object in [26]). Change detection is followed
by map update [15, 14] to construct the static map. It is
important that the proposed static map construction method
needs to be preceded toward long-term map update.

III. METHODOLOGY

Unlike existing studies, we focus on building a static map
in two phases rather than elaborately segmenting dynamic
points for each scan. Toward this objective, we examine batch
data of a certain length as in [27] to enhance the quality of
the static map.

A. Problem definition

Setup and notations. Given a point cloud map constructed
using a set of raw LiDAR scans, we aim to remove dynamic
points within the map. The proposed method works as post-
processing and can generally be used to detect pointwise long-
term (permanent) changes. In doing so, we mainly consider
two different coordinates, global unified map coordinate M
and a local sensor query’s frame Q. We use PQ for a single
scan of the query session and PM for a submap within the
global frame.

We assume the associated SE(3) pose TQ
k for a PQ

k (k
is the index of a frame) is known using SLAM such as
[3, 5, 8], but with some level of estimation error. Then, we
select a query point cloud PQ

k from the query set
{
PQ
k

}
and

compare it against PM to remove for dynamic objects from
map points.

During this comparison, we divide the target map into two
mutually exclusive subsets: a set of static points PSM and a



Fig. 2: The pipeline of the proposed static map construction method. The capital letters Sk and Dk represent a point cloud
mainly composed of static and dynamic points, at kth iteration. The size of the box enveloping Sk or Dk represents the size
of each point cloud (i.e., the number of points), and the color of the box represents its true prediction ratio within a point
cloud; the proposed Removert algorithm iteratively enhances a central static map by applying fine to coarse resolutions of
range images. A BR module is the abbreviation of BATCHREMOVAL (see §III-C and Algorithm. 1). As our by-product, we
can self-label pointwise dynamicity and automatically parse dynamic objects for each scan using the constructed global static
map (examples in the right bottom of Fig. 5).

set of dynamic points PDM . Formally, the aforementioned
problem is expressed as

PM = PSM ∪ PDM , (1)

while PSM ∩ PDM = ∅.
Initial segregation leverages conventional segmentation

methods to estimate P̂SM and P̂DM which inevitably contain
status prediction errors. In this paper, we refer to the static
status as positive (P) and the dynamic status as negative (N).
Then the estimates P̂SM and P̂DM are expressed as

P̂SM = TP ∪ FP and P̂DM = TN ∪ FN , (2)

where TP, FP, TN, and FN represent true positive, false posi-
tive, true negative, and false negative point sets, respectively.
Using this equation, we can redefine the problem as reducing
the number of FP and FN points within the static and dynamic
estimates.

Indeed, from the fact that the FN is equal to a subset of
whole TP points if we assume a point always belongs to
the static or dynamic set, our goal can be understood as
detecting FN points from P̂DM and moving them to P̂SM .
Our algorithm performs this process repeatedly and augments
the predicted static map so that it converges closer to the
true static map. In short, this iterative static map enhancing
strategy is the main idea behind our “remove-then-revert
(Removert)” algorithm. The outline is given in Fig. 2 and the
details will be provided in §III-D.

B. Range image-based map comparison

Sharing the analogous philosophy to existing approaches
[14, 15], we perform dynamic point discrimination using
visibility rather using voxel ray tracing. Unlike existing
methods, we check the visibility of a map point within
a projected range image plane. As in Fig. 3, the matrix
operations while varying the range image’s resolution are
straightforward ways to detect discrepancies and to relieve
the map point association ambiguities (see §III-D for details).
For the visual domain, a similar work used an image-format

for 3D change detection [27]. We also provide a range image-
based visibility check method for a LiDAR point cloud, and
extend to a multiresolution version for better static map
prediction by alleviating LiDAR motion ambiguities.

For dynamic object removal, we project the large size map
(i.e., |PM | > |PQ

k |) into a fixed-size range image using the
relative transformation between the query’s kth frame and
the map. During the projection, we use a range image of
particular resolution (e.g., a single pixel represents 1◦ for both
horizontal and vertical FOV). We call this FOV-restricted and
sampled map point cloud a “visible map point cloud”. The
visible map point cloud PM

k is defined as its equivalent range
image IMk = (IMk,ij) ∈ Rm×n, such that

IMk,ij = min
p∈PM

ij

r(p) , (3)

PM
k = {pM

k,ij | pM
k,ij = argmin

p∈PM
ij

r(p)} , (4)

where the number of pixels m and n are determined by
the given particular resolution per pixel and horizontal and
vertical [min,max] FOV ranges. r( · ) represents a range of a
point p ∈ R3 within the query scan’s local coordinate. IMk,ij
is a pixel (i, j) value of the range image. PM

ij is a subset of
PM such that points with spherical coordinates (i.e., elevation
and azimuth angle) reside in the pixel (i, j).

In the same way, the query scan’s range image IQk and its
associated point cloud PQ

k are acquired. Then, the visibility
of map points is calculated via their matrix element-wise
subtraction as

IDiff
k = IQk − I

M
k , (5)

and we assign a map point pM
k,ijas ∈ PM

k as dynamic if
its corresponding pixel value of IDiff

k is larger than a certain
threshold τD. Finally, the dynamic map points are defined as

PDM
k = {pM

k,ij | its associated IDiff
k,ij > τD} , (6)

and the static map points are defined as the complementary
set of the dynamic map points as PSM

k = PM
k − PDM

k . We



Fig. 3: Left column: high (fine) resolution range image (0.4◦ for a pixel). Right column: low (coarse) resolution range image
(1◦ for a pixel). From top to bottom, each row represents IQk , IMk , and IDiff

k , respectively. The color map shows the distance
(range) of a pixel’s 3D point with respect to a kth sensor frame; blue is closer and red is further away. Thus, the red pixels in
the bottom range images (i.e., IDiff

k ) represent a high discrepancy between a query scan and a map. Therefore, the map point
at that pixel should be marked as dynamic (see white boxes at the left column). Using the fine resolution range image (left)
removes a number of ambiguous points at object boundaries or grounds (orange boxes at left columns); these are actually
static. They are first removed and solidly certain static points are retained during the initial iteration. At the coarser step, the
aforementioned misclassified dynamic (actually static) information could be recovered. However, points near the ground tend
to be incorrectly recovered if we use too coarse a resolution of a range image (see the bottom of the car in the green box in
the right bottom range image).

additionally propose to use an adaptive threshold to modulate
the sensitivity of our algorithm with respect to the point’s
distance; the adaptive threshold is defined as a function of
the range: τDada = r(pM

ij )τD.

C. Batch dynamic point removal

Our main problem involves complete removal of dynamic
points rather than in-flight processing. In this section, we
present a batch version of §III-B to carefully update from
multiple scan voting. Doing so allows one to overcome the
map point occlusion and FOV limitation in a single scan. The
module in this section (§III-C) is called BATCHREMOVAL in
our algorithm description of Algorithm. 1.

We assume a set of sequential N scans along robot
motions is given in advance. For each scan PQ

k , where
k = 1, ..., N , we perform the range image-based dynamic
map point detection as described in §III-B and count the total
number marked as SM or DM for every single point in the
map; nSM and nDM . Then, the dynamic map PDM ⊂ PM

is defined using a staticity score s( · ), which is a weighted
function of nSM and nDM , and the static map is naturally
defined as the complement of PDM :

PDM = {pM | s(pM ) < τS} , (7)
PSM = PM − PDM . (8)

Here, the staticity score of a single 3D point s( · ) :=
αSMnSM (pM ) + αDMnDM (pM ) and αSM and αDM are
a positive and a negative weight coefficient, respectively. We
note that some uncounted points (i.e., never marked during
the batch) are considered static by default.

Furthermore, the comparison and removal should be
independent of vehicle motion. For example, a car in front
that moves at the same speed may hardly be removed if we
sample query scans in the same order as the motion sequence.
During the comparison, we conduct the batch while randomly
selecting a query scan PQ

k .

Fig. 4: A visualization of the proposed remove-then-revert
algorithm described in Fig. 2 and Algorithm. 1. The colormap
shows point’s height for visual clarity (red is higher) and we
note that all figures showing point cloud maps follow these
color codes.

D. Removert: remove, then revert static points

The dynamic map separation in §III-C could be used as it
is with a single fixed-size resolution range image. Yet, we
found additional refinement is required because the estimated
dynamic points may include static points (top row of Fig. 4).
As reported in [14], for example, ground points are ambiguous
because their range widely varies even when the points’
incidence angle differences are small; thus, a static ground
point could easily be mismarked as dynamic. To resolve
this issue, authors [14, 25] have utilized additional normal,
incidence angle of a point, or region growing. Differing from
prior works, our method only requires points’ 3D locations (x,
y, and z). Furthermore, the existing approaches partially solved
the issue; if the original robot motion was inaccurate, then the
query point and map point could be wrongly associated. The



Fig. 5: A visualization of the product (i.e., static/dynamic map segregation) of Removert on the KITTI dataset [13] sequence
09 (top view). The top point cloud map is constructed using scans and SE(3) poses estimated using SuMa [8] for every 2 m
and has many dynamic points from various types of instances (e.g., cars and a pedestrian). Our proposed method successfully
separates dynamic and static maps from the original noisy point cloud. As a possible use-case of our static map, we can
automatically self-parse the dynamic objects within a scan (green point cloud) just by checking whether a query point in a
scan has a nearest point in a map, without elaborate ground point removal, normal estimation [14], or region growing [25].

same object may be located at the other pixels in the range
image, causing false predictions (e.g., removing false static
or retaining false dynamic points). We found false estimation
frequently occurs with narrow objects (e.g., poles) and at the
boundary of an object (e.g., tops of cars and trees; see the
orange boxes of the left bottom image in Fig. 3).

Algorithm 1 REMOVERT: Remove-then-revert algorithm.

1: inputs (from LiDAR odometry or SLAM):
2: Query scans and their poses: SQ = {PQ}, T Q

3: outputs:
4: Static/dynamic map points: P̂SM , P̂DM

5: procedure REMOVERT:
6: — Initialization
7: PM = MAKESUBMAP(SQ, T Q)
8: [PSM

t=0 , PDM
t=0 ] = BR(PM , SQ, T Q, r0)

// BR means BATCHREMOVAL in §III-C
// r0 is an initial resolution (the finest)

9: P̂SM ← PSM
t=0

10: PM
t=0 ← PDM

t=0

11: — Main
12: rimgResList = [r1, ...rnr

] // finer to coarser
13: for [i, ri] in enumerate(rimgResList) do
14: [PSM

t=i , PDM
t=i ] = BR(PM

t=i, SQ, T Q, ri)
15: P̂SM ← P̂SM + PSM

t=i

16: PM
t=i+1 ← PDM

t=i

17: end for
18: P̂DM = PM − P̂SM

19: end procedure

To solve the discrepancy ambiguities in the query to
map point association, Palazzolo and Stachniss proposed a
window-based approach (i.e., not pixel-to-pixel, but pixel-to-
window comparison) [27]. Similar to theirs, but more relaxed,
we propose using multiple range images having different
resolutions. It has the effect of implicitly associating a query
point to a map point with multiple levels of window size
without requiring the nearest point be found within a fixed
window size.

Fig. 3 shows the different characteristics of two (high
and low) resolutions. If we use a coarser pixel resolution,
then finding correspondence between a query point and a
map point is eased. A point marked as dynamic in the past
iteration could be marked as static at the coarser resolution.
The finest resolution we propose to use is r0 = vertical FOV

# rays in
Algorithm. 1. We revert its status and merge the point into
the static map as in Fig. 4. This reverting algorithm iteratively
reduces the number of FN points. During the revert, although
the number of FP points slightly increased, we can see the
correctly reverted points are dominant in Fig. 9.

IV. EXPERIMENTAL RESULTS

A. Experimental Setups

To evaluate our static map construction performance qualita-
tively and quantitatively, we used the KITTI odometry dataset
[13] and the SemanticKITTI dataset [28]. The SemanticKITTI
dataset provides scanwise labeled data and associated LiDAR
SLAM-based SE(3) trajectory poses together with synchro-
nized frames with the original KITTI dataset.

Yoon et al.’s dynamic point removal method was tested
on their two small simulation datasets [25]. Unlike them,



we selected the KITTI dataset as our evaluation target
because the KITTI dataset is widely used as a benchmark.
Furthermore, using SemanticKITTI enables us to evaluate the
pointwise static and dynamic predictions. They provide not
only semantic labels but also movable instances’ individual
IDs, so we can track which object was moved. If an object
moves longer than 0.5 m while a robot is observing a scene,
then that object’s points are dynamic.

Ground truth static map preparation. Using KITTI
scans and SemanticKITTI instance labels, we constructed
a moved-objects-excluded map and considered it as a ground
truth static map (the left of Fig. 6). For evaluation clarity, we
built a certain length of map (e.g., 100 m in Fig. 6) composed
of equidistant sampled scans (e.g., 2 m in our experiment)
with their poses estimated by SuMa [8]. We note that we did
not include SemanticKITTI’s unlabeled points, whose label
index is zero (e.g., the gray points in Fig. 8), because if we
contain them, then some dynamic points also emerge, and
SemanticKITTI’s map can no longer serve as a ground truth
static map.

Our parameters. For fair comparison, we also used
LiDAR SLAM-based scan poses predicted by SuMa [8]
following the SemanticKITTI. By doing so, we aimed to
consider less accurate pose estimation and prove the feasibility
of the proposed method without using the original KITTI
dataset’s ground truth poses.

We define a single iteration as counting static/dynamic
marks during a single batch of scans, whose enumeration
number is equal to the number of scans used to construct
a certain length of submap (e.g., 50 scans for 100 m and
2 m sampling). We calculate the staticity score of a point to
conclude whether to remove it. We used the weights αSM =
0.3 and αDM = −0.7, and thresholds τD = 0.01 and τS =
−0.1 (all experimental sequences used the same values).

We used 0.4◦ (vertically and horizontally equal) as the
initial (finest) resolution for a single pixel via r0; that is, the
KITTI dataset’s vertical LiDAR FOV (27 ◦) divided by the
number of its rays (64). The resolution grew with 0.1◦ as an
iteration evolved.

Evaluation criteria We used both SemanticKITTI’s static
map and our original map voxel down-sampled with 0.05 m
size cell. For the proposed method’s estimated static points,
we define TP if the estimated static points appear in the
SemanticKITTI ground truth map and FP if they do not
appear. Co-appearance is considered to have occurred when
a nearest point distance is within 0.1 m. In Fig. 8, TP and
FP samples are marked as green-blue and red respectively.
If a true static point in the ground truth map has no nearest
neighbor in the predicted static map, then the point is marked
as FN (yellow in Fig. 8).

B. Static map quality

Qualitative analysis. Fig. 6 shows our results and the
results from SemanticKITTI. In SemanticKITTI’s result, as
mentioned already, some static regions are dismissed and
marked as unlabeled, which could be a limitation of the
supervised human-engaged labeling. We found this dismissed

Fig. 6: A qualitative comparison of the SemanticKITTI [28]
for the KITTI 03 sequence (from frame 6 to 199, ranging
approximately 100 m). SemanticKITTI has a number of
unlabeled points, thus it loses some static points within the
dynamic-removed map (top red boxes, top view) and some
scattered bush points on a tree (a bottom red box, side view),
which are actually static.

Fig. 7: Results of the KAIST 02 sequence of the MulRan
[29] dataset. The boxes above show the trajectories of moving
pedestrians were removed, as well as the cars below.

ambiguous points from objects that have scattered shapes,
such as tree leaves (bottom of Fig. 6). Compare to the human-
labeled result, our result shows the consistent removing and
preserving performance independent of the their sensing range.
The more qualitative examples are shown in Fig. 1, Fig. 5,
and Fig. 11 for KITTI 08, KITTI 09, and KITTI 01,
respectively. See also the attached video Removert.mp4.
We also validated independence of the LiDAR configuration
by evaluating over the MulRan dataset [29] as in Fig. 7. Our
algorithm works for various LiDARs having different vertical
FOVs (i.e., 45◦ for the MulRan dataset and 27◦ for the KITTI
dataset).

Quantitative analysis. Fig. 8 and Fig. 9 show our detailed
quantitative results. As seen in Fig. 8, the proposed Removert
algorithm first radically removes ambiguous points from the
original noisy map and iteratively recovers the true positive



Fig. 8: The visualization of Fig. 6’s evolution using the proposed method on KITTI 03. The TP, FP, and FN means correctly
estimated static, falsely preserved static (i.e., static that is actually dynamic), and falsely removed static (i.e., static that should
not be removed), respectively. Gray points, which exist in our map, seem to be static but do not exist in SemanticKITTI’s
map; for fair evaluation, the gray points are not involved in the evaluation in Fig. 9.
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Fig. 9: The quantitative result of Fig. 8 shows the history
of the number of TP, FP, and FN points along the iteration
evolves. As the reverted iterations with decreasing resolutions
of the range image, a large number of FN points disappeared
while the number of FP points marginally increased; that is,
the recovered static points are dominant.

points while increasing the implicit association window size
(i.e., pixel resolution). Fig. 9 presents the historical number
of points of the iterations. We removed points in the first
three steps from the initial 0.4◦ resolution, and we reverted
points along the following seven iterations. At the right in
Fig. 9, we can observe the FN decrease was dominant while
the number of wrongly added points was small. However,
we argue that some FP points observed in uncertain regions
may actually be static, as mentioned at the bottom of Fig. 6,
and we can see this phenomenon at the right in Fig. 8. This
may slightly disrupt the quantitative result of FP in Fig. 9
and our quantitative result may be better than the report.

C. Labeling pointwise dynamicity

We introduce here a potential application of our method. As
mentioned in §I, the performance of dynamic point detection
within a scan depends on static map’s quality. Through our
Removert algorithm, we can reliably separate static points
from a noisy original map. Fig. 5 shows how we can parse
urban dynamic objects using our static map, without an
elaborate ground point removal method or shape assumptions.

The objects in Fig. 5 are acquired using simple nearest point
search in the map and segmenting points based on Euclidean
distance; if a cluster has a small number of points (e.g., less
than 30), then the object is ignored. More examples from the
KITTI dataset [13] are shown in Fig. 10.

D. Limitations

A single nearest point is selected because the map’s range
image is constructed using visibility. This could be a limitation
because we may not be able to catch dynamic points beyond
the static points in some environments, such as the concrete
median barrier in Fig. 11 (KITTI 01, around frame 256).
However, additional sensor measurements from the opposite
lanes would easily overcome the limitation.

V. CONCLUSION

In this paper, we proposed a novel method to recover
the false predictions in a dynamic map and simultaneously
enhance a static map. We also provided various qualitative
results in addition to quantitative analysis of many sequences
of the KITTI dataset and showed the proposed method
is capable of removing dynamic points while successfully
reverting and including static points. Our method has potential
applications (e.g., automatic urban dynamic object parsing),
and the self-labeled data could support the deep learning-
based segmentation methods. In future works, we will apply
Removert to data from multiple sessions [29, 30, 31] and
expand our dynamic removal algorithm to long-term change
detection and map update frameworks.
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