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Fig. 1: (Top row) LiDAR’s structural perception aliasing. These examples are from our dataset’s Riverside 01 sequence.
Urban sites contain places with few structural features (e.g., bridges) and these types of places are highly repetitive. From
this reason, two types of structural perception aliasing frequently occur, resulting in catastrophic place recognition false
alarms. (Bottom row) Radar has a longer perceptible range and is less susceptible to occlusion than LiDAR. The examples
at the bottom show that radar suffers less from the aforementioned two types of perception aliasing but has other inherent
challenges, such as noise and artifacts. Through this dataset, we aim to provide a dataset for structural place recognition
studies using those range measurements.

Abstract— This paper introduces a multimodal range dataset
namely for radio detection and ranging (radar) and light
detection and ranging (LiDAR) specifically targeting the urban
environment. By extending our workshop paper [1] to a
larger scale, this dataset focuses on the range sensor-based
place recognition and provides 6D baseline trajectories of a
vehicle for place recognition ground truth. Provided radar
data support both raw-level and image-format data, including
a set of time-stamped 1D intensity arrays and 360◦ polar
images, respectively. In doing so, we provide flexibility between
raw data and image data depending on the purpose of the
research. Unlike existing datasets, our focus is at capturing
both temporal and structural diversities for range-based place
recognition research. For evaluation, we applied and vali-

1G. Kim, Y. S. Park, Y. Cho, J. Jeong and A. Kim are with the
Department of Civil and Environmental Engineering, KAIST, Daejeon,
S. Korea [paulgkim, pys0728k, lucascho, jjy0923,
ayoungk]@kaist.ac.kr

This work was supported by [Deep Learning based Camera and LIDAR
SLAM] project funded by Naver Labs Corporation and by the National Re-
search Foundation of Korea (NRF) grant (NRF-2019K2A9A1A06070173).

dated that our previous location descriptor and its search
algorithm [2] are highly effective for radar place recogni-
tion method. Furthermore, the result shows that radar-based
place recognition outperforms LiDAR-based one exploiting
its longer-range measurements. The dataset is available from
https://sites.google.com/view/mulran-pr

I. INTRODUCTION

Place recognition has long been an important problem for
robotics application. So far most of the place recognition
approaches focus on vision-based methods. Visual place
recognition, or appearance simultaneous localization and
mapping (SLAM), solves for the matching image given a
query image in the stream. For instance, FAB-MAP [11]
solved for a large scale appearance SLAM via probabilistic
formulation. More recently since the advent of the bag-of-
words representation of an image, visual localization using
visual words has been introduced in DBoW [12].

https://sites.google.com/view/mulran-pr


TABLE I: Dataset comparison with respect to range sensor configuration and fitness for place recognition study

Datasets Freiburg
[3]

Ford
Campus

[4]

KITTI
[5]

NCLT
[6]

Complex
Urban

[7]

nuScenes
[8]

Marulan
[9]

Oxford Radar
Robotcar

[10]

Ours
(MulRan)

LiDAR
3D Horizontal 3 3 3 3 3 3 3

2D Push-broom 3 3 3 3
3D Tilted 3

Radar Scanning 4
(not for PR)

3
(short: 40m) 3 3

Structural Diversity F FF F FFF FF F F FFF
Temporal diversity FFF FF FF FF

Spatial Scale of a Sequence F F FF FF FFF FF F FF FFF

Loop Frequency F F FF FF FF F F FF FFF
Reverse F F FF F FFF

Among range-measuring sensors, LiDAR has been widely
adopted in robotics including autonomous car research. The
robustness to illumination change and measurement precision
has allowed many LiDAR-based methods to outperform
vision-based methods [13]. Recently, loop-closure detection
methods using point cloud descriptors have been introduced
in many studies [14, 15, 16].

Radar is another promising range sensor that is robust to
occlusions and has a perception range longer than LiDAR,
but previous methods have mostly exploited radar for object
detection. The angular ambiguity prohibits direct application
to point cloud-like measurements when using the radar
sensor. Existing radar sensors in aerial application are mainly
used for imaging radar on a large scale [17]. On a mobile
platform, radar has been used for dynamic object detection
[18, 19] as an auxiliary sensor and has not been studied much
in SLAM research because the major challenge of using radar
arises from sparse, noisy sensor characteristics compared to
LiDAR. Recently, however, radar has been getting attention
from academia related to SLAM, despite the aforementioned
challenges, because radar is robust to occlusions and has
long-range capturing capability. In particular, a frequency-
modulated continuous-wave (FMCW) scanning radar was
proven in [20, 21, 22]; the sensor is useful for robot motion
estimation in challenging environmental conditions (e.g.,
forests and off-road Iceland).

From those recent promising works, outdoor robot nav-
igation with scanning radar can feasibly succeed where
LiDAR or cameras fail. However, there are few radar place
recognition algorithms [23, 24, 25] and no dataset partic-
ularly designed to quantitatively validate the radar’s place
recognition capability despite the fact that a place recognition
method is fundamentally required to complete a full radar
SLAM framework.

In this paper, we present a multimodal range measurement
dataset including the radar and LiDAR sensor and targeting
for urban place recognition. To the best of our knowledge,
radar’s urban place recognition capability has not been
evaluated and few methods exist. To fill this gap, we provide
a LiDAR-radar data pair during urban driving as an extended
version of our previous work [1], and report some LiDAR

and radar place recognition methods’ performance over our
dataset. Our contribution points are:

• We provide a multi-environment, multi-sesson, and mul-
timodal range (i.e., radar-LiDAR) dataset. Our dataset
has both radar and 3D LiDAR (see Table II) and in-
cludes multi-session sequences along a repeated trajec-
tory within a changing city with month-level temporal
gaps as shown in Table III and Fig. 4.

• Our dataset has various types of revisit events. We
deliberately designed sequences’ routes to have multiple
revisits for the same places (both in-session and multi-
session with time gaps) so that the number of queries
is enough for scalable place recognition evaluation.
Furthermore, our sequences contain monthly revisits so
as to capture the temporal diversity of the environment
toward long-term robust place recognition.

• As a validation of the dataset, we present an initial
ranged-based place recognition evaluation. We applied
a place descriptor from our previous work [2] to both
radar and LiDAR measurements to prove that the de-
scriptor is applicable for general range measurements.
Furthermore, radar outperforms the LiDAR in regards
to place recognition, especially when a longer range is
preferred (e.g., riverside).

II. RELATED WORK

A. Existing Range Datasets

We summarized existing LiDAR and radar datasets, target-
ing place recognition studies. For each dataset, the reverse
loop detection capability and long-term robustness are listed
in Table I.

From KITTI [5] to Complex Urban dataset [7], many
datasets include LiDAR measurements; however, there are
few available radar datasets in academia. As we pointed out
in §I, there is a strong need for more radar datasets with
sufficient ground truth, considering the potential of radar
for robust navigation. Recently, the nuScenes dataset [8]
has provided multiple radar measurements, but these non-
scanning and sparse radar data are less adequate for place
recognition. Marulan datasets [9] provide 2D Cartesian radar
images at each sweep. The image format data are convenient



TABLE II: The sensor specification of the MulRan Dataset

Sensor Mount type Manufacturer Model Description No. Hz Range

3D LiDAR Horizontal Ouster OS1-64 64 channel, 360◦ FOV 1 10 120 m
Radar Horizontal Navtech CIR204-H 0.9◦ and 0.06 m resolution, 360◦ FOV 1 4 200 m

Fig. 2: The sensor system is equipped with a single radar
and a 3D LiDAR sensor, providing multimodal range mea-
surements.

because the existing vision algorithm can be directly applied.
The radar sensor, however, has a relatively slow sensing
speed compared to LiDAR. As a result, the image data timed
only with the last angle ray (i.e., without time stamps in
measurement at each azimuthal ray; see Fig. 5 for details)
have relatively high data distortion due to vehicle movement.
Oxford Radar RobotCar dataset [10] extended their dataset
[26] by including 3D LiDARs and a scanning radar. Their
dataset includes multiple repeated routes over the same area.
Having a large overlap, the dataset could be applicable
to place recognition; however, the dataset possesses the
limited in a single place, while ours is with both temporal
(monthly revisits) and structural (multi-city) diversity of the
environment.

B. Place Recognition for Range Data

Compared to existing predominantly appearance-based
methods [11, 12, 27], structural information-based place
recognition could be more beneficial under light-condition
variance and long-term scenarios [28]. In particular, LiDAR-
based place recognition methods [3, 14, 15, 2, 29, 30] have
been widely studied to exploit the accuracy of direct 3D
measurement for distant structures (e.g., 100 m). However,
existing methods are vulnerable in situations in which a
raw input scan could be look different than previously
experienced, such as reverse revisit and revisit with a lane-
level change [2]. Existing LiDAR datasets in Table I have
very few such situations, making algorithm validation to
overcome the issue difficult.

In the meantime, considering the long-range capturing
capability (e.g., 200 m) of LiDAR and the robustness to
environmental variance (e.g., dynamic objects or occlusions),
radar poses a great potential for robot missions in complex
urban sites [31, 24, 21, 22] and extreme environments
(e.g., fog [32]), respectively. Despite these advantages and
recent studies, few place recognition methods are proposed

[23, 24, 25] and there have been no public quantitative
evaluations.

III. SYSTEM OVERVIEW

A. Sensor Configuration

The main objective of our dataset is to boost range sensor-
based place recognition researches. To meet this goal, we
construct a sensor system with combining a single radar
and a single 3D LiDAR as in Fig. 2 so that two different
type of range sensors would capturing almost similar field
of view (FOV). When installing the OS1-64 LiDAR at the
front, however, it loses its FOV approximately 70 ◦ due to
the radar behind it. The detail specification is described in
Table II.

B. Sensor Calibration

We first set a vehicle base’s coordinate, the same as in [7].
For the vehicle base to OS1-64 3D LiDAR calibration, we
use the same extrinsic calibration pipeline for the VLP-16
3D LiDAR in [7]; the roll, pitch, and z are first found using
grounds. The x, y, and yaw are then calculated using scene
overlaps during a round trip.

For the extrinsic calibration between vehicle base and
radar, we calculate the relative transformation between the
front LiDAR (OS1-64) and the radar using phase correlation
[33] as depicted in Fig. 3. We first make a LiDAR polar
image from a single OS1-64 LiDAR scan’s bird-eye-view of
the same size as the radar polar image and using the same
perception range of the radar (i.e., 3360 pixels up to 200 m ×
400 pixels along 360 ◦). We then convert it to a binary image
by assigning 1 to the pixels where the associated LiDAR
points exist. By applying phase correlation as in [33], we
perform the cross-modal registration and compute the relative
transformation. In doing so, only relatives of x, y, and yaw
are calculated because the radar sensor does not provide 3D
information, but intensities over the horizontal 2D plane.
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Fig. 3: Extrinsic calibration between the LiDAR and the radar
using phase correlation [33].



TABLE III: The sequence details

Target Problem Sequence Name Sequence Index (date) Length (avg)01 02 03

Online place recognition (in-session localization)
DCC 2019-08-02 2019-08-23 2019-09-03 4.9 km

KAIST 2019-06-20 2019-08-23 2019-09-02 6.1 km

Riverside 2019-08-02 2019-08-16 2019-08-23 (reverse) 6.8 km

Global localization (localization between multi-session) Sejong City 2019-06-20 2019-08-20 2019-08-20 (reverse) 23.4 km

KAISTDCC Riverside Sejong city

Fig. 4: Aerial-map-overlaid trajectories of the sequence 01, 01, 02, and 01 for each environment, respectively. For each
sequence, we tried to maximize the loop-closure candidates to generate enough queries for place recognition evaluation.

IV. MULRAN: THE MULTIMODAL RANGE DATASET

Our dataset has four target environments and three se-
quences for each environment, having repeated trajectories
over the same locations from different dates as in Table III.
In addition, we provide sequences of a completely reversed
route for Riverside, and Sejong, having one-way driv-
ing directions, to support a reverse-revisit detection studies.
We first introduce our four target environments and then
describe the provided data format.
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Fig. 5: The data structure of a sequence in the MulRan
dataset. We provide a single radar scan as two types; a
polar image with a single time (blue in Fig. 5(b)) and a
set of power-range spectra with their individual time stamps
(yellow in Fig. 5(b)).

A. Target Environments

In this subsection, we briefly explain why the four experi-
mental environments in Fig. 4 were selected and summarize
their characteristics.

1) Dajeon Convention Center (DCC): This environment
is relatively smaller than other sequences but is structurally
diverse, with a square, narrow roads between high-rise build-
ings, a mountain, and crossroads.

2) KAIST: The KAIST sequence is a campus environment
with multiple distinguishable structures and a small number
of dynamic objects. For the DCC and KAIST sequences,
we intentionally include multiple reverse revisits and revisits
with lane-level translations, which are useful to evaluate
rotation-invariant and translation-robust place recognition
algorithms; those two requirements are particularly important
for long-term autonomy for a mobile robot [29].

3) Riverside: The Riverside sequences contain
straight runs along a river and two bridges where structural
features are repetitive, as shown in Fig. 1.

4) Sejong City: Sejong City in South Korea is an en-
tirely planned and still-developing city [35], as seen in
Fig. 4. Therefore, Sejong sequences are structurally di-
verse, ranging from rural areas to urban sites with a variety
of structures (e.g., bridge, tunnel, or overpass) as seen in
Fig. 6; we believe the Sejong sequences help to develop
environment-independent algorithms for place recognition. A
single Sejong sequence has few in-session loop candidates,
but we designed Sejong sequences for not only online place
recognition but global localization problems, such as when
a map or prior experiences exist (i.e., multi-session or long-
term place recognition [36, 29]). This capability is required



Fig. 6: Structural diversity in a single sequence (Sejong 01). These captures are taken from a point cloud map using our
3D LiDAR. The color map represents an intensity value of each point (red is high).

(a) DCC 01 (b) KAIST 01

Fig. 7: A set of examples of a single radar scan on the corresponding aerial map. For clarity of visualization, we show
them as binary images by removing pixels of low intensity. Radar can perceive a broad amount of space (± 200 m) and
suffers less from data loss from occlusions, so it is efficient at capturing structural information such as building and road
shapes, which could be important cues for place identification. Multipath effects [34, 20], however, are easily observed (e.g.,
virtual lines penetrate where no structures exist in Fig. 7(b)); this is caused by the multiple reflections of radar signals within
structures and is the crucial limitation of the radar data.

for a changing city such as Sejong, where new structures
arise for every month. Therefore, we note that a Sejong
sequence has almost 100 % more loop candidates than the
other date sequence, and providing enough test cases to
validate long-term place recognition algorithms.
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Fig. 8: A pipeline of Scan Context-based [2] radar place
recognition method. We use the jet color map for visualiza-
tion clarity; we use the intensity polar image directly, only
downsampling with pixel interpolation.

B. Ground Truth Trajectory

The baselines (i.e., 6D ground truth trajectory) of the
aforementioned sequences are made via SLAM using
fiber optic gyro (FOG), Virtual Reference Station GPS
(VRS-GPS), and Iterated Closest Point (ICP). This process
is exactly the same as Complex Urban Dataset’s ground
truth trajectory-making procedure [7], so please refer to it
for details.

C. Data Description and Format

The overall directory structure of a sequence is depicted in
Fig. 5. The Ouster directory contains <time stamp.bin>
binary files and a single file corresponds to a single scan,
which contains x, y, z, and intensity information for all
points in the scan. The format is identical to KITTI [5]’s
Velodyne scan file. For the radar data, as details are vi-
sualized in Fig. 5, we provide not only polar images as a
default format but also a data directory ray, which contains
individual rays’ time for more precise data processing such as
motion distortion compensation [37] or 1D signal requiring
methods (e.g., constant false alarm rate (CFAR)). Those two
types of radar data format have exactly the same information,
except for the individual time stamps in a scan. We note again
that radar’s timestamps are provided both per scan and per



(a) Online place recognition (b) Global localization

Fig. 9: Radar outperforms LiDAR for urban place recognition.

ray whereas LiDAR’s are given in per scan.
For the users’ convenience, we also provide a Robot

Operating System (ROS) player program, which reads indi-
vidual radar and LiDAR files in the directory and publishes
corresponding ROS topics according to their times.

V. EVALUATION OF MULRAN DATASET

In this section, we evaluate place recognition methods for
LiDAR and radar of the proposed dataset. To the best of
our knowledge, however, there is no common agreement on
radar place recognition methods or widely used methods,
such as DBoW [12], in the visual domain. Thus, in this
paper, we also introduce a practical and effective radar place
recognition algorithm called Radar Scan Context (RSC).

A. Radar Place Recognition

We found that our previous work Scan Context [2], which
was originally proposed for LiDAR place recognition, would
be also a good choice for radar data (i.e., an intensity
image in a polar coordinate) for place recognition and even
outperforms a LiDAR sensor. The overall place recognition
pipeline is described in Fig. 8. We first downsize an original
radar polar image to a small image. We use a mean function
rather using L0 norm, which was originally proposed in [2],
for making a ring key because a radar image rarely has
zero values and mean function still satisfies rotation invari-
ance. The two-phase hierarchical search algorithm and the
alignment-based distance function for pairwise comparison
are identical to the original paper [2]. The computation time
is practically acceptable for real-time navigation as already
proven in [2].

B. Experiments

Evaluation metric. We used the precision-recall curve
[38] as the evaluation metric and the results are depicted
in Fig. 9. We consider a query’s answer correct if the top
1 retrieved answer is in 5 m; that is, a robot should find a
previous node’s index if the robot revisits the place within
5 m or reject localization to avoid a false-alarm.

Comparison method. For the LiDAR method in the result
figure (Fig. 9), we used a single OS1-64 3D LiDAR scan as a
query input and Scan Context [2] as a method, which showed
state-of-the-art LiDAR place recognition performances for
a horizontally mounted 3D LiDAR [29]. For both LiDAR
and Radar, the descriptor’s shape was 40 × 120 and 50
candidates are retrieved from ring key tree search.

C. Results

Despite LiDAR exhibiting competitive results in relation
to radar for a few environments (i.e., DCC and KAIST),
LiDAR’s performance decreased in wide-open spaces with
few structural features and many moving objects (i.e.,
Riverside), as argued in Fig. 1 and shown in the right
plot of Fig. 9(a).

In comparison to LiDAR, the performance of our proposed
Scan Context-based radar place recognition method was
consistent in all environments. RSC is robust to multipath
effects, as shown in Fig. 7. Because our alignment-based
distance [2] first downsamples the large (3333 × 400), noisy
radar image to a small image (in our experiment, we used 40
× 120) and takes into account the consensus of all rays in a
scan, it is less disturbed by partially noisy (from multipath
effects) azimuthal rays.

Radar also outperformed LiDAR in global localization.
As in Fig. 9(b), we used Sejong 01 as a map (database),
and query data is from a different date, Sejong 02. We
note that the steep valley point at the left side of LiDAR’s
curve in Fig. 9(b) occurred in narrow places, where LiDAR’s
perception ability is almost lost, usually due to dynamic
objects’ occlusions (e.g., a large bus). On the other hand,
radar is not vulnerable to occlusion, so this phenomenon is
not found.

VI. CONCLUSION

In this paper, we release a new dataset, called Multimodal
Range (MulRan) Dataset. Our dataset is particularly designed
for place recognition studies in urban sites regarding the
intentional inclusion of many loop candidates within multi-
cities and reverse revisits through multi-session and month-
level time gaps. However, we do not restrict MulRan’s
potential usage for place recognition studies and expect
it to be useful for other radar and radar-LiDAR fusion-
based robotics research (e.g., SLAM) via accompanying 6D
ground truth trajectories. Together with the dataset, we also
introduced the Scan Context-based radar place recognition
method and showed that radar outperforms LiDAR.
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