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Fig. 1: In this paper, we describe our localization method that learned from data collected on a single day and had consistent
performance for over one year. In defining the existence of an unlearned place (i.e., an area the robot has not visited before),
the algorithm we employ is capable of handling unseen places, which appear during long-term navigation.

Abstract— In this paper, we present a long-term localization
method that effectively exploits the structural information of
an environment via an image format. The proposed method
presents a robust year-round localization performance even
when learned in just a single day. The proposed localizer learns
a point cloud descriptor, named Scan Context Image (SCI),
and performs robot localization on a grid map by formulating
the place recognition problem as place classification using a
convolutional neural network (CNN). Our method is faster
than existing methods proposed for place recognition (e.g.,
[1, 2]) because it avoids a pairwise comparison between a query
and scans in a database. In addition, we provide thorough
validations using publicly available long-term datasets [3, 4] and
show that the SCI localization attains consistent performance
over a year and outperforms existing methods.

I. INTRODUCTION

Localization in a coarse [5] or fine manner [6] is one of
the most necessary and basic abilities of a mobile robot.
Recently, focus has moved to long-term autonomy (LTA) [7]
in order to operate in a real outdoor environment beyond a
lab-level static and controlled environment. LTA is partic-
ularly important for localization because the appearance of
an environment changes over time (e.g., light condition or
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occlusion), potentially resulting in robot localization failure.
Although many methods [7, 8] have been proposed, few
agree on a complete visual-based solution to overcome this
problem. To accomplish the LTA in changing environments,
many approaches [9] have tried to take multi-experiences
into a localization framework. These approaches revealed
inherent drawbacks because they need to capture various
conditions for the same place a priori to increase the size
of the database with the number of experiences.

Contrast to visual appearance, the physical structure of a
place rarely changes over time. Hence, leveraging structural
information that is perceptible within a place has benefits
for long-term localization [10] than methods based on ap-
pearance only. In that sense, a single time observation using
Light Detection and Ranging (LiDAR) could represent a
canonical characteristic of a place, eliminating the need for
multiple experiences for robust localization. In this line of
research, a handcrafted descriptor-based [1, 11] and learning-
based [2, 12] method for place recognition over a point cloud
has been widely proposed. However, these studies hardly
captured the long-term localization requirements, including
a slow but massive structural variance (e.g., construction
and demolition) and unexpected viewpoint from the road
topology change.

Many LiDAR-based, global, coarse localization methods
have focused on making a robust descriptor with a strong
capability to discriminate between places. The current re-
search on descriptors can be divided into non-learning and
learning-based.

Non-learning based Descriptors: M2DP [1] is a hand-



Fig. 2: Overall pipeline of the SCI localization and performance evaluation.

crafted descriptor; it projects a point cloud into multiple
planes, whose normal directions are manually determined.
M2DP showed that, unlike previously proposed methods
such as histogram-based [13], it can effectively perform place
recognition even in an outdoor context with a noisy point
cloud. Inspired by the concept of 3D isovists [14] used
in urban design, Scan Context (SC) [11] has shown that
extracting only the highest points of a visible point cloud
outperforms others including M2DP. Recently, a study on
using intensity instead of structural information [15] was
released.

Learning-based Descriptors: Recently, Uy and Lee pro-
posed a network called PointNetVLAD [2], which com-
bined PointNet [16] and NetVLAD [17] to generate a point
cloud descriptor with achieving permutation invariance. They
validated the network provided enough generality; that is,
the network taught with the Oxford RobotCar [4] dataset
works well for scans obtained by other robots in different
environments. Unlike PointNetVLAD’s borrowing metric
learning, SegMap [12] brought an encoder-decoder system
to make a descriptor into its simultaneous localization and
mapping (SLAM) framework so as to enable both efficient
reconstruction and robust loop-closure detection.

Although many methods have been proposed, there are
few empirical studies showing the effectiveness of LiDAR
descriptors on long-term localization capability in urban
areas. Several works have attempted to address long-term
accurate (centimeter-level) localization within a prior LiDAR
point cloud map using Bayesian filtering. Maddern et al. [18]
proposed a 2.5D rasterized, image-based, GPU-accelerated
search. Recently, Withers and Newman [19] introduced a
point-wise rejection method for handling scene changes and
avoiding false localization. This kind of work usually focuses
on how to model structural scene changes within a Bayesian
framework, rather than the global place retrieval capability
of large-scale localization.

Differing from the aforementioned descriptor-based cat-
egory, an end-to-end localizer that infers a robot’s pose
directly using deep learning has nowadays been gaining
attentions. This formulates the localization problem as 6D
pose regression [6] or a course place classification [20].
Compared to these image-based localizers [6, 20], however,
few direct methods accept a LiDAR point cloud as input
have been proposed.

In this paper, we present a CNN-based, end-to-end local-

ization framework (Fig. 1). The proposed localizer is based
on a point cloud descriptor called Scan Context Image (SCI)
that effectively summarizes the unstructured point cloud into
a structured form. We validate that only a single experience
is sufficient to demonstrate the effectiveness of our method
on the tested datasets. Refer to the video sciloc.mp4 as well.

Our approach is similar to PlaNet [20] in that we also
consider a place as a class and formulate a localization task
as a classification task using a CNN. Unlike PlaNet, which
provides a rough location scope that cannot be used for
mobile robot navigation, we guarantee successful localization
within a few meters on a map of a several hundred or
thousand meters. Our contribution points are summarized
below.

• We introduce the classification-based place retrieval
pipeline using an image-shaped point cloud descriptor
called SCI.

• To alleviate false alarms during long-term localization,
we propose an entropy-based detection module for
unseen places.

• Evaluations for two long-term datasets (the NCLT
dataset [3] and the Oxford RobotCar dataset [4]) are
provided. The proposed method localizes a path of over
10 km for over a year and covers all seasons and severe
structural and viewpoint changes.

II. SCI GENERATION AND TRAINING

In this section, we introduce a 3D point cloud descriptor
in an image format named SCI. Because SCI is created from
a point cloud descriptor, Scan Context (SC), we first provide
a brief review of SC. We refer readers to [11] for more
detail. Next, we introduce a deep learning based classification
method for long-term localization. The overall pipeline, from
the training to the procedure of the localization, is depicted
in Fig. 2.

A. A brief review of Scan Context (SC)

Scan Context (SC) takes a 3D point cloud as an input
and divides its planar-surrounding regions within a maximum
range into sectors and rings, which are segments divided into
azimuthal and radial directions, respectively. The intersection
of a sector and a ring is called a bin. SC only takes the
highest point value from each bin and arranges them into a
2D matrix form, through which the internal arrangement of
bins is preserved. The top part of Fig. 3 shows the making

https://youtu.be/apmmduXTnaE


process of SC from a raw point cloud. In this paper, the
number of rings, the number of sectors, and the maximum
range are 40, 120, and 80 m, respectively.

B. Scan Context Image (SCI)

The previously defined SC is a single-channel matrix that
encapsulates robust structural information (i.e., the maximum
height of points) around a scene. Although SC is already
in an image-like form, we normalize it and convert this
into three channels to be suitable as input for CNN. When
converting, the structural height out of [hmin, hmax] is sat-
urated. In this work, we use a jet colormap, which has a
larger variance than sequential colormaps, and the mapping
function (fc) with hmin = 0 m and hmax = 15 m. In doing
so, we empirically validate a small improvement compared
with training with one channel image. The proposed SCI
increases the discriminative power to more than that of SC
and is also a more suitable format for inputting a CNN. This
process is visualized in Fig. 3. We note that further investiga-
tion on network tuning for monochrome images or colormap
selections may improve the localization performance.

C. Location Definition

Because we formulate the outdoor robot localization prob-
lem as a classification issue, we use a classification network.
We first divide the region, which is covered in the training
sequence, into equal-sized (e.g., 10 m by 10 m) grid cells
on the x-y plane and assign a different index to each cell. A
single cell represents a single place. Then, all SCIs acquired
in a cell are used to train a CNN with its class label; the
label is a one-hot encoded vector of the corresponding place
index. The label dimension is equal to the total number of
places because we consider each place as a unique class.
Then, the network is trained with categorical cross-entropy
loss, which is generally used to train a classification network.

D. Network Selection

Any CNN structure can be used to construct the proposed
localization system, but we use a LeNet [21]-like network

TABLE I: A simple network structure we used. BN and MP
are batch normalization and max pooling, respectively, and
we used 2× 2 pooling size. The number in the Conv() and
FullyConnected() layer means the number of filters and the
number of nodes, respectively. 5× 5 filters were used for
all convnets and 0.7 (30 % remains) dropouts were applied
for all Dropout layers. N is the number of total places. We
trained the network with 64 of batch size and using Adam
optimizer with default parameters (learning rate = 0.001, β1
= 0.9, β2 = 0.999).

Input (batch size, 40, 120, 3 )
Conv1 BN(MP(ReLU(Conv(64, Input))))
Conv2 BN(MP(ReLU(Conv(128, Conv1))))
Conv3 Flatten(MP(ReLU(Conv(256, Conv2))))
FC1 FullyConnected(64, Dropout(Conv3))
FC2 softmax(FullyConnected(N , Dropout(FC1)))

Output (batch size, N )

ring

sector

Highest point’s height (m)

[R, G, B]
= [ 0.749, 0, 0]

[0.623, 1, 0.373]

[0, 0, 0.561]

Top View of point cloud

Point cloud to Scan Context (SC)

13.9 (m)

7.9 (m)

0.0 (m)

SC to SCI
via coloring 

[ℎmin, ℎmax]

𝑐𝑐max𝑐𝑐min

Sc
an

 C
on

te
xt

 Im
ag

e 
(S

CI
)

Sc
an

 C
on

te
xt

Ra
w

 P
oi

nt
 c

lo
ud

Fig. 3: Scan Context Image (SCI) generation from a raw
point cloud and conversion to a 3-channel SCI.

with regularization to demonstrate that our method works
well with a simple network. A detailed structure and param-
eters are shown in Table I.

E. N-way SCI Augmentation

We propose N-way augmentation to achieve the viewpoint
invariance to tackle potential viewpoint variance in the long-
term localization. Because the column order of SCI indicates
the heading of a robot, viewpoint variation via synthetic SCI
in the training phase is fairly simple (e.g., the column-shift).
Here, N is the number of 360 degrees divided by a constant
interval. An example of two-way augmentation (what we call
reverse augmentation) is visualized in Fig. 7.

III. SCI LOCALIZATION

A. Un-learned Place Detection

In the LTA scenario, the robot may visit a new place that
is, not in the training set. Therefore, detection and proper
handling of this unlearned location are critical in LTA. Prior
to the localization module, we first identify whether a query
place is a new place or not (i.e., a query point cloud is
from a new place or not) to avoid false localization. We
call the new place, unseen place, and an existing place in
the training sequence, seen place. This task can be consid-
ered in unknown-unknown class detection [22], which has
highly attracted computer vision researchers for constructing
more robust classification system. For example, Dropout
Variational Inference [23] can approximately provide a class
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Fig. 4: The example of the distribution of entropies of
prediction score vectors for seen and unseen. This example
is from the test sequence 2015-06-12-08-52-55 of the Ox-
ford RobotCar dataset. Left: The histogram of predictions’
entropies from seen places usually has small values. Right:
The histogram of entropies from unseen (new) places has a
large variance, and there are higher entropies than the case
of seen places.

probability but requires multiple predictions, which is time-
consuming and thus may be difficult for real-time robot
localization.

Unlike this costly method, we propose a way to directly
use the entropy of the output vector (without dropout at
the test time) from the network. Note that we do not aim
to approximate each class probability; instead, we rather
focus on identifying whether the query is seen or unseen.
As will be shown in §V, this entropy of the output vector
has a substantially stronger discriminative performance than
traditional pairwise distance-based thresholding (e.g., the
Euclidean distance) for unseen place handling. Specifically,
we use the following normalized entropy of the prediction
score vector H(p) = − 1

Hmax

∑N
i=1 pi log2 pi, where pi is

the ith element of the vector p and Hmax, which is the
maximum entropy of a N dimensional vector, exists for the
normalization.

If the entropy of the prediction vector is higher than a
given threshold τ (user parameter), it is considered as a new
place and rejected without localization. On the other hand,
we only perform localization in the following step for images
classified as seen. Fig. 4 shows an example of the distribution
of entropies from seen and unseen places of the sequence.

B. Localization

If the query is considered to be seen (i.e., the point cloud
is obtained from seen places), then localization is performed
using the prediction score vector. The index of this vector’s
element, which has the largest score, is concluded as the
current place. More generally, we would say the localization
is successful if the ground truth index of a query place
belongs to a set of top N indexes whose scores are in a
larger order in the network’s prediction score vector.

IV. EXPERIMENTS

A. Benchmark Datasets

We used two long-term datasets that are publicly available
in the robotics community: the NCLT [3] and Oxford Robot-
Car [4] datasets. Both datasets provide multiple sequences

Fig. 5: A visualization of a point cloud and the associated
SCI for a 3D scan from the NCLT dataset (left) and a
submap, which accumulates 2D scans, from the Oxford
RobotCar dataset (right).

along similar trajectories over a year and include various
environmental changes for the same places.

The NCLT dataset provides 3D LiDAR scans and each
scan is directly encoded into the SCI as described on the
left of Fig. 5. For the Oxford RobotCar dataset, we used
sequences with the full trajectory of nearly 10 km. This
dataset has no 3D LiDAR, and 2D LiDAR were mounted
perpendicularly to the vehicle’s moving direction. Thus we
accumulated 2D scans along a local trajectory for enough
length as visualized on the right of Fig. 5. We set an accumu-
lation length (or a window size) equal to the maximum range,
which is the parameter of an SCI. We use the visual odometry
the dataset provides for stacking scans. By stacking them, we
use the relative motion between a previous scan and a recent
scan is placed at the origin. In doing so, we can make a 3D
point cloud (or a submap) with enough information to make
an SCI. We considered the global coordinate available from
the ins.csv file as the ground truth of each place. Only places
with a reliable inertial navigation system (INS) status (i.e.,
INS SOLUTION GOOD) are used for training and tests.

The size of a grid cell for the main analysis (Fig. 6 and
Fig. 8) is 10 m by 10 m. For this grid map resolution, the
NCLT and Oxford RobotCar datasets have 579 and 700
places in their training sequences, respectively. The places
from the NCLT and Oxford RobotCar datasets are trained
with only a single sequence, and then the localization is
evaluated for the following 10 sequences, which covers over
a year. For training, an SCI and descriptors of comparison
methods are sampled for every 1 m. The test sequences
are also evaluated by sampling every 1 m. Details about
the training and test sequences of the NCLT and Oxford
RobotCar datasets are summarized in Table II. The seen and
unseen rows indicates the number of queries from seen and
unseen places.

B. Comparison Methods

We compare our method, SCI-localization, with three
state-of-the-art handcrafted and learning-based point cloud



TABLE II: Summary of datasets

Dataset Train Seq. Test Seq.

NCLT
2012-01-15 2012-02-04 2012-03-17 2012-05-26 2012-06-15 2012-08-20 2012-09-28 2012-10-28 2012-11-16 2013-02-23 2013-04-05

579 places Seen 5170 5449 5533 3321 5146 4626 4623 3575 4114 3341
Unseen 441 428 773 742 835 919 1034 1290 1095 1162

Oxford
Robot

Car

2014-07-14
-14-49-50

2014-07-14
-15-16-36

2014-11-25
-09-18-32

2014-12-17
-18-18-43

2015-02-03
-08-45-10

2015-03-10
-14-18-10

2015-04-17
-09-06-25

2015-05-22
-11-14-30

2015-06-12
-08-52-55

2015-07-10
-10-01-59

2015-08-13
-16-02-58

700 places Seen 4079 5484 3926 5657 5106 5485 5664 4321 4872 5043
Unseen 414 2066 1769 2163 2782 2571 2232 3062 2585 2466
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Fig. 6: Precision-recall curves for two long-term datasets, NCLT and Oxford RobotCar dataset.

descriptors: M2DP [1], Scan Context [11], and Point-
NetVLAD [2]. For a fair comparison, both methods construct
a database using only descriptors from a single sequence and
are compared to a query descriptor from test sequences for
over a year. The nearest candidate’s index is considered a
query’s location.

M2DP is a lightweight point cloud descriptor designed for
loop-closure detection. The core idea of M2DP is projecting
a 3D point cloud into multiple 2D planes. We used the same
parameters and procedure as the original authors by using
the open-source of M2DP1, and we acquire a 192-dimension
descriptor from a point cloud.

Scan Context-50 exploits a similar descriptor as the SCI,
but in a non-learning based way. SC used the column-wise
comparison to calculate the distance between a query and a
candidate. To clearly validate the learning effect, we compare
SCI against Scan Context-50 in [11], which is the method
that takes 50 candidates for the pairwise comparison.

PointNetVLAD is a combination of PointNet [16] and
NetVLAD [17], so it can directly consume a point cloud
without any reformulation such as projection or voxelization.

1https://github.com/LiHeUA/M2DP

We applied preprocessing similar to the original paper; a
ground-removed point cloud within a [−25 m, 25 m] cubic
window2 is filtered into the constant number (4096) points
and rescaled into a [-1, 1] range with a zero mean. This
processed point cloud is fed to the network, and, finally,
we get a 256-dimensional descriptor. We used the pretrained
model (refined version) the authors provided3.

V. EVALUATION RESULTS

In this section, we provide intensive analyses to validate
the effectiveness and robustness of the proposed method. The
detailed information of training data and test sequences are
described in Table II. The test sequences of each dataset were
possibly selected to include at least one sequence per month
to cover various conditions over the entire year. The number
of samples in rows of seen and unseen places in Table II are
sampled per every 1 m and are used for the evaluation.

2We empirically checked that an increased window size ([-80 m, 80 m])
deteriorated their performance for PointNetVLAD

3https://github.com/mikacuy/pointnetvlad



(human pilot)

Fig. 7: Robustness to non-structural changes. Despite challenging factors (e.g., viewpoint changes, occlusions, and foliage),
the proposed method successfully found its location with a high score for over hundreds of places over a year.

Fig. 8: AUC performance changes over time for different
criteria of success localization.

A. Precision-recall Curve

We first evaluate the general performance using the
precision-recall curve for both datasets throughout the long-
term operation (Fig. 6) by varying the entropy threshold
τ for our method and the pairwise distance threshold (the
Euclidean distance for M2DP, PointNetVLAD and Scan
Context-50 uses its proposed distance (6) in [11]) for com-
parison methods for unseen place handling. The evaluation
procedure is depicted in the right side in Fig. 2. If a query is
considered as a seen place, we considered the localization to
be correct if the index of the largest element of the network’s
output vector (for our method) or nearest descriptor’s place
index (for M2DP, Scan Context-50 and PointNetVLAD) is
the same as the answer (i.e., top 1 performance).

The learning-based descriptor, PointNetVLAD, outper-
formed the handcrafted method, M2DP, by a large margin.
However, PointNetVLAD revealed lower performance than
our method in terms of long-term localization performance.
Moreover, the proposed SCI localization method presented

less fluctuation than others in performance over time. For
Scan Context-50, the column-wise matching function of SC
assumes a surround-capturing LiDAR; thus it showed the
poor performance at the Oxford RobotCar dataset, which
used 2D LiDAR. SCI decreases performance over time but
still performs better than other methods.

B. Retrieval Capability

For large-scale localization, not only the top 1, but taking
more candidates (e.g., top 5 and top 25) would also be
meaningful. Therefore, we provide a more in-depth analysis
of the retrieval power of each method. We extended the
criteria of the correct answer to the top 5 and top 25
candidates to investigate by how much the performance of
each method increased.

Fig. 8 shows a comparison of overall performance. We
plot the area under the curve (AUC) of the precision-recall
curve of each sequence as a measure. The closer the AUC is
to 1, the more perfect the localization. The AUC values of all
methods have increased by allowing the top 25 candidates but
our top 1 performance is comparable or better than others’
top 25 performance.

C. Long-term Robustness

In this subsection, we investigate two types of environ-
mental changes; non-structural and structural changes.

Non-structural changes: Although the structural infor-
mation of a scene is naturally robust for LTA, there are a
few challenging factors that make a point cloud different
from the experience. Fig. 7 visualizes the examples of
challenging cases and their corresponding SCIs from the
NCLT dataset. The NCLT dataset always had partial and
varying occlusion due to an accompanying human pilot. In
addition, the Segway-like robot used in the NCLT dataset
had an unstable roll motion compared to a car platform, and
partial structures such as foliage changed over time. Despite
these challenging factors, our method successfully localized
a query because the SCI preserved the internal relations of
the egocentric scene structure, unlike the other descriptors
that lost the original scene’s structural shapes.
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(b) Precision-recall curves for demolition and construction. Each line is a mean for 10 test sequences.

Fig. 9: Robustness to structural changes on the test sequences of the NCLT dataset.

Structural changes: The long-term structural challenges
arise from structural experience (i.e., structures that existed
at the training sequence) that may have disappeared (demoli-
tion) or been newly constructed (construction) over time. For
validation, we removed points within a randomly selected
sector or added new randomly generated wall-shaped points,
as in Fig. 9(a). Because the M2DP is based on point
projection, it is less affected by the appearance of structures
but is vulnerable to demolition. PointNetVLAD was sensitive
to the removal and addition of points as it uses only 4096
points as the input. Although SC utilizes descriptors very
similar to SCI, we verified that ConvNet based unseen place
detection and classification-based retrieval are superior in
localization performance.

D. Robustness to Viewpoint Changes

Arbitrary viewpoint variation inevitably occurs during the
long-term localization. In this section, we examine the effect
of N-way augmentation on the viewpoint change robustness
by increasing N in the training phase. Unfortunately, the

(a) Retrieval performance of each
method for random viewpoint
changes

0.
37

0.
51

0.
83

0.
94

(b) Precision-recall curves for each
N-way augmentation.

Fig. 10: Robustness to random viewpoint changes on the test
sequences of the NCLT dataset. Each line is a mean for 10
test sequences.

number of queries in original datasets are rather small for
testing various viewpoint cases. Instead, we tested the trained
network by randomly rotating a query point cloud’s heading.

As seen in Fig. 10(a), existing descriptors, including the
baseline of SCI-localization without N-way augmentation,
failed to localize under arbitrary viewpoint changes. We
empirically validated that using four-way augmentation could
yield sufficient robustness to the viewpoint variation. In
doing so, the general performance is also preserved as in
Fig. 10(b). The bottom of Fig. 10(b) presents the AUC
relative to the original performance in Fig. 6(a) without the
intentional heading rotation.

E. Grid Cell Size

We also evaluated localization performance by considering
different grid sizes to identify whether finer localization is
possible. We conducted the same experiment as in §V-A
but with different grid cell sizes. The grid cells are finer
(5 m by 5 m) and coarser (20 m by 20 m). The number of
output nodes in the SCI localization network was reset to
the new total number of places and retrained. The results
for different grid cell sizes are shown in Fig. 11. Despite
increased labels of over 1000 places for 5 m2 resolution and
a slight decrease in performance, our method still presented
higher performance with lower variance than PointNetVLAD
with a 10 m resolution for both datasets.

Fig. 11: Performances with respect to different grid cell sizes.
The vertical black line pinned at each bar represents the
standard deviation of all (10 for each dataset) test sequences.



TABLE III: Average time cost for each method. The compar-
ison is conducted on the 2013-04-05 of the NCLT dataset.

Method Descriptor Generation (sec) Retrieval (sec) Total (sec)
SCI 0.0434 0.0047 0.0481

SC-50 0.0413 0.4633 0.5046
PNVLAD 0.1374 0.0220 0.1594

M2DP 0.0758 0.0195 0.0953

F. Runtime Evaluation

Another strength of the proposed method is the lightweight
implementation. For the runtime comparison in Table III, all
implementations used Matlab except for a few parts that used
the deep network by using Python at NVIDIA GTX 1080Ti
with a test batch size of one.

PointNetVLAD showed the longest time for a generation,
requiring both preprocessing (e.g., ground removal and filter-
ing) and passing the network. However, both PointNetVLAD
and M2DP are lightweight descriptors, and thus find a nearest
in the database quickly (i.e., short retrieval time). Scan
Context-50 is the slowest for retrieval, as reported in [11].
Unlike other methods, the SCI’s retrieval time is the shortest
because SCI-localization directly obtains scores for N places
via a single pass through the network rather than a pairwise
comparison with the whole database.

VI. CONCLUSION

We presented a global end-to-end localization method
based on deep learning by learning the point cloud descriptor,
SCI. The proposed SCI with a classification network is
more robust for long-term robot localization than other
state-of-the-art pairwise score-based place retrieval methods
[1, 2, 11]. Our method showed a consistent, and state-of-
the-art performance for over a year even though the network
was trained using only a single sequence. Due to its robust
and global performance, we expect the proposed framework
could also be used for the kidnapped robot problem or an
initialization for the finer localization as ICP [11].

In the future work, we plan to extend our work on how to
flexibly add new places to the existing network’s knowledge
without forgetting and in order to avoid whole learning again.
We will also investigate an end-to-end method that calculates
a global 6D pose by using the coarse localization result from
the SCI-localization framework.

REFERENCES

[1] L. He, X. Wang, and H. Zhang, “M2DP: a novel 3D point
cloud descriptor and its application in loop closure detection,”
in Proc. IEEE/RSJ Intl. Conf. on Intell. Robots and Sys., 2016,
pp. 231–237.

[2] M. A. Uy and G. H. Lee, “PointNetVLAD: Deep Point Cloud
Based Retrieval for Large-Scale Place Recognition,” Proc.
IEEE Conf. on Comput. Vision and Pattern Recog., 2018, In
press.

[3] N. Carlevaris-Bianco, A. K. Ushani, and R. M. Eustice,
“University of Michigan North Campus Long-Term Vision
and Lidar Dataset,” Intl. J. of Robot. Research, vol. 35, no. 9,
pp. 1023–1035, 2016.

[4] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year,
1000 km: The Oxford RobotCar dataset,” Intl. J. of Robot.
Research, vol. 36, no. 1, pp. 3–15, 2017.

[5] D. Galvez-Lpez and J. D. Tardos, “Bags of Binary Words
for Fast Place Recognition in Image Sequences,” IEEE Trans.
Robot., vol. 28, no. 5, pp. 1188–1197, 2012.

[6] A. Kendall, M. Grimes, and R. Cipolla, “PoseNet: A Convolu-
tional Network for Real-Time 6-DOF Camera Relocalization,”
in Proc. IEEE Intl. Conf. on Comput. Vision, 2015, pp. 2938–
2946.

[7] J. L. Schönberger, M. Pollefeys, A. Geiger, and T. Sattler,
“Semantic Visual Localization,” Proc. IEEE Conf. on Comput.
Vision and Pattern Recog., 2018, In press.

[8] H. Porav, W. Maddern, and P. Newman, “Adversarial Training
for Adverse Conditions: Robust Metric Localisation using
Appearance Transfer,” Proc. IEEE Intl. Conf. on Robot. and
Automat., 2018, In press.

[9] W. Churchill and P. Newman, “Experience-based navigation
for long-term localisation,” Intl. J. of Robot. Research, vol. 32,
no. 14, pp. 1645–1661, 2013.

[10] Y. Ye, T. Cieslewski, A. Loquercio, and D. Scaramuzza, “Place
Recognition in Semi-Dense Maps: Geometric and Learning-
Based Approaches,” Proc. British Machine Vision Conf., 2017.

[11] G. Kim and A. Kim, “Scan context: Egocentric spatial de-
scriptor for place recognition within 3D point cloud map,” in
Proc. IEEE/RSJ Intl. Conf. on Intell. Robots and Sys., Madrid,
Oct. 2018, pp. 4802–4809.
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