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Abstract— Compared to diverse feature detectors and de-
scriptors used for visual scenes, describing a place using struc-
tural information is relatively less reported. Recent advances in
simultaneous localization and mapping (SLAM) provides dense
3D maps of the environment and the localization is proposed
by diverse sensors. Toward the global localization based on
the structural information, we propose Scan Context, a non-
histogram-based global descriptor from 3D Light Detection and
Ranging (LiDAR) scans. Unlike previously reported methods,
the proposed approach directly records a 3D structure of a
visible space from a sensor and does not rely on a histogram
or on prior training. In addition, this approach proposes the use
of a similarity score to calculate the distance between two scan
contexts and also a two-phase search algorithm to efficiently
detect a loop. Scan context and its search algorithm make loop-
detection invariant to LiDAR viewpoint changes so that loops
can be detected in places such as reverse revisit and corner. Scan
context performance has been evaluated via various benchmark
datasets of 3D LiDAR scans, and the proposed method shows
a sufficiently improved performance.

I. INTRODUCTION

In many robotics applications, place recognition is the
important problem. For SLAM, in particular, this recognition
provides candidates for loop-closure, which is essential for
correcting drift error and building a globally consistent map
[1]. While the loop-closure is critical for robot navigation,
wrong registration can be catastrophic and careful registra-
tion is required. Visual recognition is popular together with
the widespread use of camera sensors, however, it is inher-
ently difficult due to illumination variance and short-term
(e.g., moving objects) or long-term (e.g., seasons) changes.
Similar environments may occur at different locations often
causing perception aliasing. Therefore, recent literature has
focused on robust place recognition by examining represen-
tation [2] and resilient back-end [3].

Unlike these visual sensors, LiDARs have recently gar-
nered attention due to their strong invariance to perceptual
variance. In the early days, conventional local keypoint
descriptors [4, 5, 6, 7], which were originally designed for
the 3D model in computer vision, have been used for place
recognition in spite of their vulnerability to noise. LiDAR-
based methods for place recognition have been widely pro-
posed in robotics literature [8, 9, 10]. These works focus
on developing descriptors from structural information (e.g.,
point clouds) in both local [8] and global manners [10].
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Fig. 1. Two-step scan context creation. Using the top view of a point
cloud from a 3D scan (a), we partition ground areas into bins, which are
split according to both azimuthal (from 0 to 2π within a LiDAR frame) and
radial (from center to maximum sensing range) directions. We refer to the
yellow area as a ring, the cyan area as a sector, and the black-filled area as a
bin. Scan context is a matrix as in (b) that explicitly preserves the absolute
geometrical structure of a point cloud. The ring and sector described in
(a) are represented by the same-colored column and row, respectively, in
(b). The representative value extracted from the points located in each bin
is used as the corresponding pixel value of (b). In this paper, we use the
maximum height of points in a bin.

There are two issues that the existing LiDAR-based place
recognition methods have been trying to overcome. First,
the descriptor is required to achieve rotational invariance
regardless of the viewpoint changes. Second, noise handling
is the another topic for these spatial descriptors because
the resolution of a point cloud varies with distance and
normals are noisy. The existing methods mainly use the
histogram [9, 11, 12] to address the two aforementioned



issues. However, since the histogram method only provides a
stochastic index of the scene, describing the detailed structure
of the scene is not straightforward. This limitation makes
the descriptor less discernible for place recognition problem,
causing potential false positives.

In this paper we present Scan Context, a novel spatial
descriptor with a matching algorithm, specifically targeting
outdoor place recognition using a single 3D scan. Our
representation encodes a whole point cloud in a 3D scan
into a matrix (Fig. 1). The proposed representation describes
egocentric 2.5D information. Contribution points of the pro-
posed method are:
• Efficient bin encoding function. Unlike existing point

cloud descriptors [7, 10], the proposed method needs
not count the number of points in a bin, instead it
proposes a more efficient bin encoding function for
place recognition. This encoding presents invariance to
density and normals of a point cloud.

• Preservation of internal structure of a point cloud. As
shown in Fig. 1, each element value of a matrix is
determined by only the point cloud belonging to the bin.
Thus, unlike [9], which depicts the relative geometry of
points as a histogram and loses points’ absolute location
information, our method preserves the absolute internal
structure of a point cloud by intentionally avoiding
using a histogram. This improves the discriminative
capability and also enables viewpoint alignment of a
query scan to a candidate scan (in our experiments,
6◦ azimuth resolution) while a distance is calculated.
Therefore, detecting a reverse direction loop is also
possible by using scan context.

• Effective two-phase matching algorithm. To achieve a
feasible search time, we provide a rotational invariant
subdescriptor for first nearest neighbor search and com-
bine it with pairwise similarity scoring hierarchically,
thus avoid searching all databases for loop-detection.

• Thorough validation against other state-of-the-art spa-
tial descriptors. In the comparison to other existing
global point cloud descriptors, such as M2DP [8], En-
semble of Shape Functions (ESF) [11], and Z-projection
[12], the proposed approach presents a substantial im-
provement.

II. RELATED WORK

Place recognition methods for mobile robots can be cate-
gorized into vision-based and LiDAR-based methods. Visual
methods have been commonly used for place recognition
in SLAM literatures [13, 14, 15]. FAB-MAP [13] increased
robustness with the probabilistic approach by learning a gen-
erative model for the bag of visual words. However, visual
representation has limitations such as vulnerability to light
condition change [16]. Several methods have been proposed
to overcome these issues. SeqSLAM [17] proposed the route-
based approach and showed far improved performance than
FAB-MAP. SRAL [2] fused several different representation
such as color, GIST [18], and HOG [19] for long-term visual
place recognition.

LiDAR presents strong robustness to these perceptual
changes described above. LiDAR-based methods are further
catagorized into local and global descriptors. Local descrip-
tors, such as PFH [4], SHOT [5], shape context [7], or
spin image [6], first find a keypoint, separate nearby points
into bins, and encode a pattern of surrounding bins into
a histogram. Steder et al. proposed the place recognition
method [8] using point features and the gestalt descriptor
[20] in bag of words manner.

These keypoint descriptors, however, revealed limitations
since they were originally devised for 3D model part match-
ing not for place recognition. For example, the density of a
point cloud in a 3D scan (e.g., from VLP-16) varies with
respect to the distance from a sensor, unlike the 3D model.
Furthermore, normals of points are noisier than the model
due to unstructured objects (e.g., trees) in the real world.
Hence, local methods usually require normals of keypoints
and thus are less suitable for place recognition in outdoor.

Global descriptors do not include the keypoint detecting
phase. GLARE [9] and its variations [21, 22] encoded
the geometric relationship between points into a histogram
in lieu of searching for the keypoint and extracting the
descriptor. ESF [11] used concatenation of histograms made
from shape functions. Muhammad and Lacroix proposed Z-
projection [12], which is a histogram of normal vectors, and
a double threshold scheme with two distance functions. He
et al. proposed M2DP [10], which projects a whole 3D point
cloud of a scan to multiple 2D planes and extracts a 192
dimensional compact global representation. M2DP showed
higher performance than the existing point cloud descriptors
and robustness against noise and resolution changes. As
introduced in this paragraph, global descriptors have typi-
cally used histograms. Recently, SegMatch [23] introduced
a segment-based matching algorithm. This is a high-level
perception but requires a training step, and points are needed
to be represented in a global reference frame.

In this paper, we propose a novel place descriptor called
Scan Context that encodes a point cloud of a 3D scan
into a matrix. The scan context can be considered as an
extension of the Shape Context [7] for place recognition
targeting 3D LiDAR scan data. In detail, scan context has
three components: the representation that preserves absolute
location information of a point cloud in each bin, efficient
bin encoding function, and two-step search algorithm.

III. SCAN CONTEXT FOR PLACE RECOGNITION

In this section, we describe scan context creation given
a point cloud from a 3D scan and propose a measure that
calculates the distance between two scan contexts. Next, the
two-step search process is introduced. The overall pipeline
of place recognition using scan context is depicted in Fig. 2.
The Scan Context creation and validation can also be found
in scancontext.mp4.

A. Scan Context

We define a place descriptor called Scan Context for
outdoor place recognition. The key idea of a scan context
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Fig. 2. Algorithm overview. First, a point cloud in a single 3D scan is encoded into scan context. Then, Nr (the number of rings) dimensional vector is
encoded from the scan context and is used for retrieving the nearest candidates as well as the construction of the KD tree. Finally, the retrieved candidates
are compared to the query scan context. The candidate that satisfies the acceptance threshold and is closest to the query is considered the loop.

is inspired by Shape Context [7] proposed by Belongie
et al., which encodes the geometrical shape of the point
cloud around a local keypoint into an image. While their
method simply counts the number of points to summarize the
distribution of points, ours differs from theirs in that we use a
maximum height of points in each bin. The reason for using
the height is to efficiently summarize the vertical shape of
surrounding structures without requiring heavy computations
to analyze the characteristics of the point cloud. In addition,
the maximum height says which part of the surrounding
structures is visible from the sensor. This egocentric visibility
has been a well-known concept in the urban design literature
for analyzing an identity of a place [24, 25].

Similar to shape context [7], we first divide a 3D scan into
azimuthal and radial bins in the sensor coordinate, but in an
equally spaced manner as shown in Fig. 1(a). The center of
a scan acts as a global keypoint and thus we refer to a scan
context as an egocentric place descriptor. Ns and Nr are the
number of sectors and rings, respectively. That is, if we set
the maximum sensing range of a LiDAR sensor as Lmax,
the radial gap between rings is Lmax

Nr
and the central angle

of a sector is equal to 2π
Ns

. In this paper, we used Ns = 60
and Nr = 20.

Therefore, the first process of making a scan context is to
partition whole points of a 3D scan into mutually exclusively
separated point clouds as shown in Fig. 1(a). Pij is the set of
points belonging to the bin where the ith ring and jth sector
overlapped. The symbol [Ns] is equal to {1, 2, ..., Ns−1, Ns}.
Therefore, the partition is mathematically

P =
⋃

i∈[Nr], j∈[Ns]

Pij . (1)

Because the point cloud is divided at regular intervals, a bin
far from a sensor has a physically wider area than a near
bin. However, both are equally encoded into a single pixel
of a scan context. Thus, a scan context compensates for the
insufficient amount of information caused by the sparsity of
far points and treats nearby dynamic objects as sparse noise.

After the point cloud partitioning, a single real value is
assigned to each bin by using the point cloud in that bin:

φ : Pij → R , (2)

and we use a maximum height, which is inspired from the
urban visibility analysis [24, 25]. Thus, the bin encoding
function is

φ(Pij) = max
p∈Pij

z(p) , (3)

where z( · ) is the function that returns a z-coordinate value
of a point p. We assign a zero for empty bins. For example,
as seen in Fig. 1(b), a blue pixel in the scan context means
that the space corresponding to its bin is either free or not
observed due to occlusions.

From the foregoing processes, a scan context I is finally
represented as a Nr ×Ns matrix as

I = (aij) ∈ RNr×Ns , aij = φ(Pij) . (4)

For robust recognition over translation, we leverage scan
context augmentation through root shifting. By doing so,
acquiring various scan contexts from the raw scan under a
slight motion perturbance becomes feasible. A single scan
context may be sensitive to the center location of a scan
under translational motion during revisit. For example, the
row order of a scan context may not be preserved when
revisiting the same place in a different lane. To overcome
this situation, we translate a raw point cloud into Ntrans
neighbors (Ntrans = 8 used in the paper) depending on the
lane level interval and store scan contexts obtained from
these root-shifted point clouds together. We assumed that
a similar point cloud is obtained even at the actual moved
location, which is valid except for a few cases such as
an intersection access point where a new space suddenly
appears.

B. Similarity Score between Scan Contexts

Given a scan context pair, we then need a distance measure
for the similarity of two places. Iq and Ic are scan contexts
acquired from a query point cloud and a candidate point
cloud, respectively. They are compared in a columnwise
manner. That is, the distance is the sum of distances between
columns at a same index. A cosine distance is used to
compute a distance between two column vectors at the same
index, cqj and ccj . In addition, we divide the summation by
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Fig. 3. Example of scan contexts from the same place with time interval.
The change of the sensor viewpoint at the revisit causes column shifts of
the scan context as in (a). However, the two matrices contain similar shapes
and show the same row order.

the number of columns Ns for normalization. Therefore, the
distance function is

d(Iq, Ic) =
1

Ns

Ns∑
j=1

(
1−

cqj · ccj
‖cqj‖‖ccj‖

)
. (5)

The column-wise comparison is particularly effective for
dynamic objects by considering the consensus of throughout
sectors. However, the column of the candidate scan context
may be shifted even in the same place, since a viewpoint
of a LiDAR changes for different places (e.g., revisit in an
opposite direction or corner). Fig. 3 illustrates such cases.
Since a scan context is the representation dependent on the
sensor location, the row order is always consistent. However,
the column order could be different if the LiDAR sensor
coordinate with respect to the global coordinate changed.

To alleviate this problem, we calculate distances with all
possible column-shifted scan contexts and find the minimum
distance. Icn is a scan context whose n columns are shifted
from the original one, Ic. This is the same task as roughly
aligning two point clouds for yaw rotation at 2π

Ns
resolution.

Then we decide that the number of column shift for the best
alignment (7) and the distance (6) at that time:

D(Iq, Ic) = min
n∈[Ns]

d(Iq, Icn) , (6)

n∗ = argmin
n∈[Ns]

d(Iq, Icn) . (7)

Note that this additional shift information may serve as a
good initial value for further localization refinement such as
Iterated Closest Point (ICP), as shown in Section IV-C.

C. Two-phase Search Algorithm

Three main streams are typical when searching in the
context of place recognition: pairwise similarity scoring,
nearest neighbor search, and sparse optimization [26]. Our
search algorithm fuses both pairwise scoring and nearest
search hierarchically to achieve a reasonable searching time.

-80 -60 -40 -20 0 20 40 60 80
x (m)

-80

-60

-40

-20

0

20

40

60

80

y 
(m

)

Fig. 4. The ring key generation for the fast search.

Since our distance calculation in (6) is heavier than other
global descriptors such as [12, 10], we provide a two-phase
hierarchical search algorithm via introducing ring key. Ring
key is a rotation-invariant descriptor, which is extracted from
a scan context. Each row of a scan context, r, is encoded
into a single real value via ring encoding function ψ. The
first element of the vector k is from the nearest circle from
a sensor, and following elements are from the next rings in
order as illustrated in Fig. 4. Therefore, the ring key becomes
a Nr-dimensional vector as (8):

k = (ψ(r1), ..., ψ(rNr )), where ψ : ri → R . (8)

The ring encoding function ψ we use is the occupancy ratio
of a ring using L0 norm:

ψ(ri) =
‖ri‖0
Ns

. (9)

Since the occupancy ratio is independent of the viewpoint,
the ring key achieves rotation invariance.

Although being less informative than scan context, ring
key enables fast search for finding possible candidates for
loop. The vector k is used as a key to construct a KD
tree. At the same time, the ring key of the query is used
to find similar keys and their corresponding scan indexes.
The number of top similar keys that will be retrieved is
determined by a user. These constant number of candidates’
scan contexts are compared against the query scan context
by using distance (6). The closest candidate to the query
satisfying an acceptance threshold is selected as the revisited
place:

c∗ = argmin
ck∈C

D(Iq, Ick), s.t D < τ , (10)

where C is a set of indexes of candidates extracted from KD
tree and τ is a given acceptance threshold. c∗ is the index
of the place determined to be a loop.



TABLE I
SELECTED DATASET LISTS USED IN VALIDATION

KITTI NCLT Complex Urban LiDAR
Sequence Index 00 02 05 08 20120526 20120820 20120928 20130405 00 01 02 04

Total Length (m) 3714 4268 2223 3225 6345 6018 5579 4530 12020 11830 3020 6542
# of Nodes 4541 4661 2761 4071 3164 3001 2781 2259 3630 3266 862 2140

# of True Loops 790 309 493 332 810 526 635 275 361 383 125 150
Route Dir. on revisit Same Same Same Reverse Both Both Both Both Same Same Both Same

IV. EXPERIMENTAL EVALUATION

In this section, our representation and algorithm are eval-
uated over various datasets and against other state-of-the-art
algorithms. Since scan context is the global descriptor, the
performance of our representation is compared to three other
global representations using a 3D point cloud: M2DP [10], Z-
projection [12], and ESF [11]. We use ESF in the Point Cloud
Library (PCL) implemented in C++, Matlab codes of M2DP
on the web1 from the authors He et al., and implement Z-
projection on Matlab ourselves. All experiments are carried
out on the same system with an Intel i7-6700 CPU at
3.40GHz and 16GB memory.

A. Dataset and Experimental Settings

We use the KITTI dataset2 [27], the NCLT dataset3

[28], and the Complex Urban LiDAR dataset4 [29] for the
validation of our method. These three datasets are selected
considering diversity, such as the type of the 3D LiDAR
sensor (e.g., the number of rays, sensor mount types such as
surround and tilted) and the type of loops (e.g., occurred at
the same direction or the opposite direction called reverse
loop). Characteristics of each dataset are summarized in
Table I. The term node means a single sampled place.

1) KITTI dataset: Among the 11 sequences having the
ground truth of pose (from 00 to 10), the top four sequences
whose the number of loop occurrences is highest are selected:
00, 02, 05, and 08. The sequence 08 has only reverse
loops, and others have loop events with the same direction.
The scans of the KITTI dataset had been obtained from the
64-ray LiDAR (Velodyne HDL-64E) located in the center
of the car. Since the KITTI dataset provides scans with
indexes, we use each bin file as a node directly.

2) NCLT dataset: The NCLT dataset provides long-term
measurements of different days along similar routes. Scans
of the NCLT dataset were obtained from the 32-ray LiDAR
(Velodyne HDL-32E) attached to a segway mobile platform.
Four sequences are selected considering the number of loop
occurrences and seasonal diversity. In this experiment, the
scans are sampled at equidistant (2 m) intervals, and only
those sampled scans are used as nodes for convenience.

3) Complex Urban LiDAR dataset: The Complex Urban
LiDAR dataset includes various complex urban environments
from residential to metropolitan areas. Four sequences are
selected considering the complexity and wide road rate

1https://github.com/LiHeUA/M2DP
2http://www.cvlibs.net/datasets/kitti/eval odometry.php
3http://robots.engin.umich.edu/nclt/
4http://irap.kaist.ac.kr/dataset/

provided by [29]. Among three sub-routes in the sequence
04, 04 0 and 04 1 are used in this experiment. The scans
are sampled at 3 m intervals for convenience. The interesting
fact is that this dataset uses two tilted LiDARs (Velodyne
VLP-16 PUCK) for urban mapping. Thus, a single scan of
this dataset is able to measure higher parts of structures
but does not have a 360◦ surround view. To include more
information in all directions, we merge the point clouds from
both left and right tilted LiDARs and use them as a single
scan to create a scan context.

If a ground truth pose distance between the query and the
matched node is less than 4 m, the detection is considered
as true positive. In total 50 previously adjacent nodes are ex-
cluded from the search. The experiments for scan context are
conducted with 10 candidates and 50 candidates from the KD
tree, thus each method is called scan context-10 and
scan context-50, respectively. Unlike the scan context,
which only compares with a constant number of candidates
extracted from the KD tree, other methods (M2DP, ESF, and
Z-projection) compare the query description to all in the
database. In this paper, we set parameters of scan context as
Ns = 60, Nr = 20, and Lmax = 80 m. That is, each sector
has a 6◦ resolution and each ring has a 4 m gap. The number
of bins of Z-projection is set as 100. We use the default
parameters of the available codes for M2DP and ESF. For
the computation efficiency, we downsample point cloud with
0.6 m3 grid for both scan context and M2DP, since He et al.
[10] reported M2DP is robust to downsampling, whereas
Z-projection and ESF use an original point cloud without
downsampling because they are vulnerable to low density.
We change only an acceptance threshold in the experiments.

B. Precision Recall Evaluation

The performance of Scan Context is analyzed using the
precision-recall curve as in Fig. 5. The histogram-based ap-
proaches, ESF and Z-projection, reported poor performances
on all datasets. These methods rely on the histogram and
distinguish places only when the structure of the visible
space is substantially different. Unlike these histogram based
methods, ours presented the meaningful performance for the
entire data sequences. Overall, scan context-50 always
reveals better performance than scan context-10. The
performance of scan context depends on the number of can-
didates from the KD tree. Since ring key is less informative
than scan context, inspecting a small number (e.g., 10 of
more than 3000 nodes) of candidates is vulnerable if there
are many similar structures.

The proposed method outperformed other approaches
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(l) Complex Urban 04 (same)

Fig. 5. Precision-recall curves for the evaluation dataset. The route direction during the revisit is shown in parentheses.

when applied to the outdoor urban dataset. This is due to
the fact the motivation for using the vertical height is from
urban analysis. However, the performance is limited when
applied to an indoor environment where variation in vertical
height is less significant. When applied to the NCLT dataset,
the scan context presented low performance both for recall
and precision (left part of each graph) because the trajectory
of the NCLT dataset contains narrow indoor environments
where an only small area is available.

Evaluating with the Complex Urban LiDAR dataset, all
methods show poorer performance than at the KITTI
dataset. In particular, Urban 02 provides the most chal-
lenging case for all methods since this sequence has narrow
roads and repeated structures with similar height and rect-
angle shapes5 compared to KITTI. The example of scan
context from this challenging Urban 02 is given in Fig. 6.
Despite some level of performance drop is reported in this

5http://irap.kaist.ac.kr/dataset/webgl/urban02/urban02 sick.html
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Fig. 6. A challenging example captured from Complex Urban LiDAR
dataset sequence 02. The road is so narrow in all directions that the amount
of available information is too small.

challenging dataset, the proposed method still outperformed
other existing methods.

The proposed descriptor presented a strong rotation-
invariance even for a reversed revisit by using view alignment
based matching. For example, M2DP failed to detect a
reverse loop. Among the datasets, KITTI 08 has only
reverse loops and the proposed method substantially outper-
formed others. This phenomenon is also observed in NCLT
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(a) Query point cloud

-80 -60 -40 -20 0 20 40 60 80
x (m)

-80

-60

-40

-20

0

20

40

60

80

y 
(m

)

(b) Detected point cloud
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(c) Registration without initial
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(d) Registration with Scan Context

Fig. 7. An example of point-to-point ICP results from KITTI 08. The query and the detected point clouds are from the 1785th and 109th scans,
respectively. The LiDAR sensor frame represents the coordinates of the point clouds. Scoring the similarity between two scan contexts provides a coarse
yaw rotation, which serves as an initial estimate to guide finer localization (i.e., ICP). In the case of this reverse loop, registration easily fails without such
an initial estimate. By contrast, even this kind of unstructured environment can be registered with the use of an initial estimate obtained from the scan
context.
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Fig. 8. Computation time and RMSE with and without initial values. The
x-axis represents the index of real loop events of KITTI 08. Blue and red
indicate available and unavailable initial guesses, respectively.

sequences having partial reverse loops. Therefore, at NCLT
sequences, M2DP reports high precision at the very low
recalls because the forward loops are detected correctly.
However, since reverse loops are missed, the slope of the
curve rapidly decreases.

C. Localization Accuracy

The proposed method can also be used when provid-
ing robust initial estimate for other localization approaches
such as ICP. We conducted the experiment using KITTI
08 having reverse loops. ICP is performed point-to-point
without downsampling. The example of ICP results with
and without initialization are depicted in Fig. 7. For this
sequence, we further validate the improvement in terms of
both computation time and root mean square error (RMSE).
Fig. 8 shows the improved performance with the initial yaw
rotation estimates using (7).

TABLE II
AVERAGE TIME COSTS ON KITTI00.

Calculating Descriptor (s) Searching Loop (s)
Scan context-10 0.1291 0.0807
Scan context-50 0.1291 0.3331

M2DP 0.0218 0.0032
Z-projection 0.0472 0.0035

ESF 0.0635 0.0043

D. Computational Complexity

The average computation times evaluated on KITTI 00
are given in Table II. Point cloud downsampling with a
0.6 m3 grid is used for all methods. In these experiments,
the scan context creation takes longer because we employ
scan context augmentation, which is non-mandatory. Thus,
the time required to create a single scan context (0.0143 s,
except for scan context augmentation) is shorter than it is
with the other methods. The search time of the scan context
includes both creation of the KD tree and computation of
the distance. Scan context may require a longer search time
than other global descriptors, but in a reasonable bound (2-5
Hz on Matlab).

V. CONCLUSION

In this paper, we presented a spatial descriptor, Scan
Context, summarizing a place as a matrix that explicitly
describes the 2.5D structural information of an egocentric
environment. Compared to existing global descriptors using
a point cloud, scan context showed higher loop-detection
performance across various datasets.

In future work, we plan to extend scan context by in-
troducing additional layers. That is, other bin encoding
functions (e.g., a bin’s semantic information) can be used to
improve performance, even for datasets with highly repetitive
structures such as the Complex Urban LiDAR dataset.
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