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Abstract— We present a robust Light Detection and Ranging
(LiDAR)-based place descriptor called Scan Context Image
(SCI) and a localization method that uses this representation for
long-term simultaneous localization and mapping (SLAM). We
formulate localization as a conventional supervised classification
problem using convolutional neural network (CNN), where a
gridded place is considered as a single class and SCIs acquired
in that place are the corresponding data to the class. The small
(three layers in our work) network is trained with only a single
sequence from a single date, which has a total of 579 places
and an average 26 data per class. Despite these constraints, we
show that a learned network achieves sufficient performance
in outdoor (top 5 average accuracy is over 90%) on 13 other
test sequences from different dates over 1 year with varying
environmental conditions.

I. INTRODUCTION AND RELATED WORKS

Robust place recognition over time or long-term local-
ization is a crucial module of robot navigation in the real
world beyond indoor or simulated environments. Among
many factors, temporal variance of the environment causes
major challenges for long-term localization. To achieve this
long-term localization, however, it needs to overcome both
appearance (e.g., seasonal or weather changes) and structure
(e.g., occlusions, foliage, or constructions) variations. Re-
cently, when dealing with the aforementioned issues, deep
learning-based approaches are drawing attention due to their
versatile performance under temporal and visual variations.

Deep learning methods for localization can be categorized
into two types according to their roles. The first category
serves as a robust feature extractor. Sünderhauf et al. [2]
showed using only robust regions in an image, whose ob-
jectness scores are high, can improve place recognition per-
formance under severe appearance and viewpoint changes.
More recently, Naseer et al. [3] proposed a lighter method
that leaves a continuous robust region, not bounding boxes,
in an image via learning up-convolutional networks such as
[4, 5]. However, the methods in the first category require
additional matching procedures after extracting robust fea-
tures. The second category supports end-to-end localization.
The output of this type is a metric or topological pose.
PoseNet [6] is a seminal work; it regresses the 6D pose
of a query image using CNN. Walch et al. [7] extended
[6] by combining long short-term memory (LSTM) units,
reporting a better performance than PoseNet. PlaNet [8] tried
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Fig. 1. Overview of the proposed long-term topological localization system.
Each equi-distant place (as in Fig. 3) is considered a unique class. A 3D
scan acquired in a place is encoded into the SCI improved from [1] and the
SCI is fed to the CNN whose result is a classification probability vector of
places. The network was trained using only one day in this paper. Because
the SCI effectively summarizes the ego-centric structural information of the
environment, it recognizes a place with high accuracy even on different
dates and in different environmental conditions over a year.

to address the topological localization in a gridded map using
a classification network.

As described above, many long-term place recognition or
localization studies have been conducted on applying deep
learning to visual sensor data, but there are few studies
using LiDAR sensor data with deep learning for robust
long-term localization. The data obtained from LiDAR such
as a point cloud can inherently avoid the difficulties that
occurr from image-based localization because it directly
captures the structural information of space, which is inde-
pendent of the illumination variance, and because structural
information often changes in a slower rate than visual



appearance. Thus, adopting LiDAR sensor data (e.g., point
cloud) could be more promising for long-term localization.
Furthermore, city-scale point cloud maps are nowadays being
easily generated [9]. Despite their availability, however, there
are few studies that effectively utilize them as preliminary
information for long-term localization of robots due to the
size of the point cloud maps.

In this paper, we propose a compact representation that
summarizes a place within a 3D point cloud and strategies for
learning the representation using CNN. In our previous work
[1], we showed that the proposed representation, called Scan
Context, is efficient and effective for online place recognition.
Scan context directly summarizes a 2.5D shape of a visible
scene from the observer at the location using a 3D LiDAR
scan. The accompanied matching algorithm provides a fast
coarse yaw alignment (in that work, 6◦ resolution) between
3D scans so that the scan context is robust to view-point
changes (e.g., corner or reverse loop) and serves as a good
initial value for finer localization (e.g., Iterated Closest Point
(ICP)).

In this paper, we demonstrate that scan context is also
effective for long-term robot localization as well as place
recognition. We formulate the topological localization prob-
lem as a classification of places and train the CNN by
learning scan contexts as in Fig. 1. The contributions of the
paper are summarized as below.

• We apply structure-induced synthetic images for deep
learning based localization. Thereby, we exploit deep
learning while conveying urban structures.

• We propose data preprocessing and augmentation meth-
ods for effectively training a network to increase its
performances.

• We empirically prove that learning a small (three layers
in this work) network with few training scan contexts
(e.g., a single trajectory from a single day) guarantees
consistent and adequate performances on the other
dates, whose environmental conditions vary over a year.

II. METHODOLOGY

In this paper, we formulate the topological localization
problem as a conventional classification problem using CNN,
such as in PlaNet [8]. This means that a single location
(e.g., 10 m by 10 m grid cell) is treated as a single class.
Therefore, the localization is equivalent to predicting a label
of a query SCI. First, we briefly introduce the SCI developed
in our previous work [1] as an input of a network and then
propose training strategies for achieving sufficient perfor-
mance with a small amount of data and a small network.

A. Scan Context Image (SCI)

Scan context is an ego-centric spatial descriptor generated
from a 3D point cloud. The scan context is represented in
an image format by mapping azimuthal and radial direction
information to the two image coordinates, columns and rows,
respectively. We define this synthesized image as SCI. Based
on an observer, the height of the structures along the radial
direction comprises a column each in the synthesized SCI.

(a) Sample SCI

(b) Augmented SCI (reversed)

Fig. 2. An example of the reversed route augmentation. Shifting half of the
columns (180◦) acheives data augmentation. This is expected to mimic the
scan context that is obtained when visiting the same place from the reverse
direction. Both the original and its reversed route SCI with the same label
are used for training a network.

Then, evaluating this height change along the radial direction
for each azimuth angle yields the final SCI. The resolution of
the SCI is determined by the spatial resolution. In this paper,
an image of 40 pixels by 120 pixels is synthesized. That is,
we used 40 bins (2 m resolution when maximum sensing
range is set to 80 m) in the radial direction and 120 bins
(3 ◦ resolution) in the azimuthal direction. This structural
description in an image format well discriminates locations
from a map. Because the descriptor preserves direction
information (column order), rotation invariant detection is
achievable via a proper distance function such as [1].

B. Preprocessing and Data Augmentation

To better train a network and to increase the discriminative
power, raw scan context processing strategies are proposed.

Coloring (3-channel amplification): First, we feed a
colorized scan context into a network for both training and
test. The original scan context is a 1-channel matrix since a
pixel value of a scan context is a single real value, highest
height in the corresponding bin. However, we amplify a raw
1-channel scan context to a 3-channel colorized SCI with
a specific colormap to improve the discriminative power. In
this work, we use jet colormap, and the color axis is set from
0 m to 15 m. The threshold range was chosen empirically to
minimize the skewness of the distribution of height values
in the region of the NCLT dataset. That is, the color is blue
if the bin value is 0 (e.g., ground) and the color is red if
the bin value is equal to or greater than 15 (e.g., a tree or a
building).

Backward data augmentation: Our ultimate goal is to
learn the SCI for a location from a single day and recognize
places on different dates. If we were to exploit a single
sequence training, a place is usually visited in only one
direction during the training sequence. To variate and impose
rotation invariance, we performed data augmentation, as in
Fig. 2, to be able to recognize when visiting the same place
in a reversed route.



TABLE I
THE NETWORK STRUCTURE AND PARAMETERS

Input

40x120

Conv Max
Pool BN

Conv Max
Pool BN

Conv Max
Pool Flat

Drop
out

Fully
Connected Drop

out

Fully
Connected

Kernel
Size

# of
Filters

Activ.
Func.

Pool
Size

Kernel
Size

# of
Filters

Activ.
Func.

Pool
Size

Kernel
Size

# of
Filters

Activ.
Func.

Pool
Size # of Units # of Units

5x5 64 ReLU 2x2 5x5 128 ReLU 2x2 5x5 256 ReLU 2x2 0.7 64 0.7 914
(# of Classes)

TABLE II
INFORMATION ABOUT TRAINING AND TEST SEQUENCES

Type Date Conditions Length
(km)

# of
Sampled DataTime Foliage Snow

Train 2012-01-15 Afternoon No Yes 7.5 15078

Test

2012-02-04 Afternoon No No 5.5 5170
2012-02-05 Morning No No 6.5 6238
2012-02-12 Midday No Yes 5.8 5396
2012-02-19 Midday No No 6.2 5782
2012-03-17 Morning No No 5.8 5449
2012-03-25 Midday No No 5.8 5478
2012-05-26 Evening Yes No 6.3 5536
2012-06-15 Morning Yes No 4.1 3321
2012-08-20 Evening Yes No 6.0 5148
2012-09-28 Evening Yes No 5.6 4624
2012-11-16 Evening No No 4.8 3575
2013-02-23 Afternoon No Yes 5.2 4119
2013-04-05 Afternoon No Yes 4.5 3342
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Fig. 3. Places of NCLT area. A place is a 10 m by 10 m grid.

III. EXPERIMENTS AND RESULTS

A. Training the Network

We validate our method using The North Campus Long-
Term (NCLT) dataset [10]. This dataset contains long-term
multiple sequences that cover similar trajectories with wide
variations of environmental conditions (e.g., time, foliage,
and weather). The sequences are named by its acquisition
date, such as 2012-01-15.

We first divide the whole area of the NCLT dataset into
10 m by 10 m grids, and each grid is considered as a single
place. Fig. 3 shows the gridded places and the frequency of
visits over time per each place. The white indicates that the
place had been visited more frequently. The NCLT dataset
has a total of 914 places with at least one measurement. We
numbered each place from 1 to 914 and the index is used as
the label of the place.

# of training data per each place
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Fig. 4. The distribution of the number of training data per place. A
single sequence, 2012-01-15, is used to train the network. The sequence
2012-01-15 visits 579 places, and each place has 26 data on average.

The architecture of the network and parameters we use
are summarized in the Table I. This network takes a 40x120
RGB image (colorized SCI) and classifies the label of the
place, where a query SCI is acquired. The network is trained
using only a single sequence 2012-01-15. The scans
of the training sequence are sampled at every 1 m. Each
scan is encoded into a SCI and is labeled according to its
corresponding place index. Fig. 4 show the distribution of
the number of training data along each place. Places that
are visited multiple times have slightly more data. The label
of a place is turned into a 914 dimension one-hot encoded
vector to train the classification network. 2012-01-15 has
579 places but we set the dimension of the one-hot vector to
914, which is the total number of places the NCLT dataset
has, considering later expandability. We used an Adam [11]
optimizer with default parameters from Keras [12]. The batch
of 64 is used.

B. Performance Evaluation

We validate the performance of the trained network on 13
test sequences from other dates. Those sequences were se-
lected considering the diversity of environmental conditions
and the detailed information in Table II. The scans of the
test sequences are also sampled at an equi-interval of 1 m.
Each scan is an encoded colorized SCI. In the case of a test,
backward data augmentation is not applied. That is, only the
scan context acquired in that current direction is fed to the
trained network.

Only places visited in the training sequence are manually
selected and tested in this preliminary work. The perfor-
mance is quantitatively measured via (1):

Accuracy =
|SCtest

correct|
|SCtest|

(1)

, where SCtest is a set of all test scan contexts of a sequence
and SCtest

correct is a set of scan contexts whose place prediction
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Fig. 5. Classification results. If the correct label is included in the labels
having N largest values in the 914 dimension output vector, it is considered
true-positive localization.

TABLE III
AVERAGE ACCURACIES WITH VARIANCE (1 σ) FOR TOP 1 AND TOP 5.

Top 1 Top 5
Accuracy (%) 79.63 ± 3.48 93.94 ± 2.26

result is correct within an allowed degree such as top 1 or
top 5.

Fig. 5 shows the localization results for each test date.
The trained network shows consistent performance with little
variance over time. Because SCI summarizes the structural
information, the performance of the network is consistent
regardless of seasonal, light condition (time), and structural
(e.g., foliage and snow) changes. In addition, unlike range
images from 3D LiDAR, SCI is also robust against temporal
occlusion by summarizing maximum height distribution of
overall visible scene structure. The average performances
with variances are summarized in Table III. The network
retrieved the top 5 places with over 90% accuracy for
large-scale outdoor environments (ground areas of at least
50, 000 m2 because each place is a 10 m by 10 m grid and
the training sequence has 579 places). Thus, it can function
as an effective global localizer for scalable localization over
long-term period, which means that the SCI network can be
used as a forward module to reduce the search space for
existing map-based finer localization for metrically accurate
localization.

IV. CONCLUSION

In this paper, we demonstrated the Scan Context is ef-
fective for long-term robot localization. We only had a few
training samples per place, which is considered as a class,
from a single date and showed it guarantees consistent and
sufficient performance (top 5 accuracy is over 90% for 579
different places) on other 13 dates over 1 year.

In the future, we plan to compare ours with other ConvNet
methods such as [13], and integrate unknown-unknown place
detection module within our localization system.
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