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Graph-Based SLAM ?? 
SLAM = simultaneous localization and  
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Graph-Based SLAM ?? 
SLAM = simultaneous localization and  
mapping 
 
graph = representation of a set of  
objects where pairs of objects are  
connected by links encoding relations  
between the objects 
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What is my goal  
for today?  
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Robot pose Constraint  

Graph-Based SLAM 

§  Nodes represent poses or locations  
§  Constraints connect the poses of the 

robot while it is moving 
§  Constraints are inherently uncertain 
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Graph-Based SLAM 

§  Observing previously seen areas 
generates constraints between non-
successive poses 

 

Robot pose Constraint  
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Idea of Graph-Based SLAM 

§  Use a graph to represent the problem 
§  Every node in the graph corresponds 

to a pose of the robot during mapping 
§  Every edge between two nodes 

corresponds to a spatial constraint  
between them 

§  Graph-Based SLAM: Build the graph 
and find a node configuration that 
minimize the error introduced by the 
constraints  
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Graph-SLAM and Least Squares 

§  The nodes represent the state 
§  Given a state, we can compute what 

we expect to perceive 
§  We have real observations relating  

the nodes with each other 
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Graph-SLAM and Least Squares 

§  The nodes represent the state 
§  Given a state, we can compute what 

we expect to perceive 
§  We have real observations relating  

the nodes with each other 

Find a configuration of the  
nodes so that the real and  
predicted observations are  

as similar as possible  

Giorgio’s lecture 
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Error Function 

state 
(unknown) 

predicted  
measurements 

real 
measurements 

minimize the differences! 
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Procedure in Brief 

Iterate the following steps: 
§  Linearize around x and compute for 

each measurement 

§  Compute the terms for the linear 
system 

§  Solve the linear system 
  

§  Updating state 
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Let’s use that for SLAM 
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Robot pose Constraint  

Pose-Graph-Based SLAM 

§  Nodes represent poses or locations  
§  Constraints connect the poses of the 

robot while it is moving 
§  Constraints are inherently uncertain 
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Pose-Graph-Based SLAM 

§  Observing previously seen areas 
generates constraints between non-
successive poses 

 

Robot pose Constraint  
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The Pose-Graph 

§  It consists of n nodes   
§  Each     is a 2D or 3D pose (position 

and orientation of the robot at time ti) 
§  A constraint/edge exists between the 

nodes     and     if… 
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Create an Edge If… (1) 

§  …the robot moves from     to 
§  Edge corresponds to odometry 

The edge represents the 
odometry measurement 
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Create an Edge If… (2) 

§  …the robot observes the same part of 
the environment from     and from 

xi 

Measurement from     

xj 

Measurement from   
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Create an Edge If… (2) 

§  …the robot observes the same part of 
the environment from     and from 

§  Construct a virtual measurement 
about the position of     seen from  
 

Edge represents the position of     seen 
from     based on the observation  
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Transformations 

§  How to express     relative to    ? 
§  Express this through transformations 
§  Let      be transformation of the origin 

into 
§  Let        be the inverse transformation 
§  We can express relative 

transformation  
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Transformations 

§  How to express     relative to    ? 
§  Express this through transformations 
§  Let      be transformation of the origin 

into 
§  Let        be the inverse transformation 
§  We can express relative 

transformation 
§  Transformations can be expressed 

using homogenous coordinates 
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Transformations 

§  Transformations can be expressed 
using homogenous coordinates 

§  Odometry-Based edge 
 

§  Observation-Based edge 

describes “how node i sees node j” 
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The Edge Information Matrices 

§  Observations are affected by noise 
§  Information matrix      for each edge 

to encode its uncertainty 
§  The “bigger”     , the more the edge 

“matters” in the optimization  
 

Question 
§  What should these matrices look like when 

moving in a long, featureless corridor? 
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Pose-Graph 

nodes 
according to 

the graph  

error 

observation  
of      from 

edge 
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Pose-Graph 

Goal: 

nodes 
according to 

the graph  

error 

observation  
of      from 

edge 
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The Error Function 
§  Error function for a single constraint  

§  Error as a function of the whole state vector 

§  Error takes a value of zero if 

xj seen from xi measurement 
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Error Minimization Procedure  

§  Define the error function 
§  Linearize the error function  
§  Compute its derivative  
§  Set the derivative to zero 
§  Solve the linear system 
§  Iterate this procedure until 

convergence 
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Linearizing the Error Function 

§  We can approximate the error 
functions around an initial guess    
via Taylor expansion 

with 
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Derivative of the Error Function 

§  Does one error term           depend on 
all state variables? 
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Derivative of the Error Function 

§  Does one error term           depend on 
all state variables? 

       No, only on     and   
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Derivative of the Error Function 

§  Does one error term           depend on 
all state variables? 

       No, only on     and   
§  Is there any consequence on the 

structure of the Jacobian? 
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Derivative of the Error Function 

§  Does one error term           depend on 
all state variables? 

       No, only on     and   
§  Is there any consequence on the 

structure of the Jacobian? 
 Yes, it will be non-zero only in the   
 rows corresponding to     and 
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Jacobians and Sparsity 

§  Error           depends only on the two 
parameter blocks     and 

 
 
§  The Jacobian will be zero everywhere 

except in the columns of     and  
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Consequences of the Sparsity 

§  We need to compute the coefficient 
vector    and matrix    : 

 
§  The sparse structure of      will result 

in a sparse structure of   
§  This structure reflects the adjacency 

matrix of the graph 
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Illustration of the Structure 

Non-zero only at xi and xj 
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Illustration of the Structure 

Non-zero only at xi and xj 

Non-zero on the main  
diagonal at xi and xj 
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Illustration of the Structure 

Non-zero only at xi and xj 

... and at 
the blocks 

ij,ji 

Non-zero on the main  
diagonal at xi and xj 
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Illustration of the Structure 

+ + … + 

+ + … + 
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Sparsity Effect on b 

§  An edge contributes to the linear 
system via      and   

§  The coefficient vector is: 

§  It is non-zero only at the indices 
corresponding to     and  
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Sparsity Effect on H 

§  The coefficient matrix of an edge is: 

 

§  Non-zero only in the blocks relating i,j  
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Sparsity Summary 

§  An edge ij contributes only to the  
§  ith and the jth block of   
§  to the blocks ii, jj, ij and ji of   

§  Resulting system is sparse 
§  System can be computed by summing 

up the contribution of each edge 
§  Efficient solvers can be used 

§  Sparse Cholesky decomposition  
§ Conjugate gradients 
§ … many others 
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All We Need… 

§  Vector of the states increments: 

§  Coefficient vector: 

§  System matrix: 

small blocks 
(or vectors)  

corresponding  
to the individual 

constraints 
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… for the Linear System 

For each constraint: 
§  Compute error 
§  Compute the blocks of the Jacobian: 

 
§  Update the coefficient vector: 
 
§  Update the system matrix: 
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Algorithm 
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Real World Examples 
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The Graph with Landmarks 

Feature 

Pose 

Constraint 
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The Graph with Landmarks 

§  Nodes can represent: 
§ Robot poses 
§ Landmark locations 

§  Edges can represent: 
§ Landmark observations  
§ Odometry measurements 

§  The minimization 
optimizes the landmark 
locations and robot 
poses  

Feature 

Pose 

Constraint 
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§  Expected observation (x-y sensor) 

 

Landmarks Observation 

robot landmark 
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§  Expected observation (x-y sensor) 

 
§  Error function (in Euclidian space) 
 

Landmarks Observation 

robot landmark 
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Bearing Only Observations 

§  A landmark is still a 2D point 
§  The robot observe only the bearing 

towards the landmark 
§  1D Observation function 

 

robot landmark robot  
orientation 

robot-landmark 
angle 
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Bearing Only Observations 

§  Observation function 

§  Error function 

robot landmark robot  
orientation 

robot-landmark 
angle 
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The Rank of the Matrix H 

§  What is the rank of       for a  
2D landmark-pose constraint? 
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The Rank of the Matrix H 

§  What is the rank of       for a  
2D landmark-pose constraint? 
§  The blocks of      are a 2x3 matrices 
§        cannot have more than rank 2 
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The Rank of the Matrix H 

§  What is the rank of       for a  
2D landmark-pose constraint? 
§  The blocks of      are a 2x3 matrices 
§        cannot have more than rank 2 

                               

§  What is the rank of       for a  
bearing-only constraint? 
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The Rank of the Matrix H 

§  What is the rank of       for a  
2D landmark-pose constraint? 
§  The blocks of      are a 2x3 matrices 
§        cannot have more than rank 2 

                               

§  What is the rank of       for a  
bearing-only constraint? 
§  The blocks of      are a 1x3 matrices 
§        has rank 1 
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Rank 

§  In landmark-based SLAM, the system 
can be under-determined 

§  The rank of     is less or equal to the 
sum of the ranks of the constraints 

§  To determine a unique solution, the 
system must have full rank 
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Under-Determined Systems 

§  No guarantee for a full rank system 
§  Landmarks may be observed only once 
§ Robot might have no odometry 

§  We can still deal with these situations 
by adding a “damping” factor to 

§  Instead of solving                     ,  
we solve 

   (H  + λ I) Δx = -b 
 

          Levenberg Marquardt 
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UAV Example 
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UAV Example 
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Summary 

§  The back-end part of the SLAM 
problem can be solved with GN or LM  

§  The     matrix is typically sparse 
§  This sparsity allows for efficiently 

solving the linear system 
§  There are several extensions 

(online, robust methods wrt outliers or 
initialization, hierarchical approaches, 
exploiting sparsity, multiple sensors) 
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YouTube Lectures 

https://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_ 
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Thank you for your attention! 
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Slide Information 
§  These slides have been created by Cyrill Stachniss, Giorgio 

Grisetti and Wolfram Burgard evolving from different courses 
and tutorials that we taught over the years between 2010  
and 2016. 

§  I tried to acknowledge all people that contributed image or 
video material. In case I missed something, please let me 
know. If you adapt this course material, please make sure 
you keep the acknowledgements. 

§  Feel free to use and change the slides. If you use them, I 
would appreciate an acknowledgement as well. To satisfy my 
own curiosity, I appreciate a short email notice in case you 
use the material in your course. 

§  My video recordings of my lectures on robot mapping are 
available through YouTube: 
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list 

Cyrill Stachniss, cyrill.stachniss@igg.uni-bonn.de      


