ICRA 2016 Tutorial on SLAM

Graph-Based SLAM and Sparsity

Cyrill Stachniss

Graph-Based SLAM ??

Graph-Based SLAM ??

SLAM = simultaneous localization and mapping

Graph-Based SLAM ??

SLAM = simultaneous localization and mapping

graph = representation of a set of objects where pairs of objects are connected by links encoding relations between the objects

What is my goal for today?

Graph-Based SLAM

- Nodes represent poses or locations
- Constraints connect the poses of the robot while it is moving
- Constraints are inherently uncertain

Graph-Based SLAM

 Observing previously seen areas generates constraints between nonsuccessive poses

Idea of Graph-Based SLAM

- Use a graph to represent the problem
- Every node in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to a spatial constraint between them
- Graph-Based SLAM: Build the graph and find a node configuration that minimize the error introduced by the constraints

Graph-SLAM and Least Squares

- The nodes represent the state
- Given a state, we can compute what we expect to perceive
- We have real observations relating the nodes with each other

Graph-SLAM and Least Squares

- The nodes represent the state
- Given a state, we can compute what we expect to perceive
- "Giorgio's lecture

Find a configuration of the nodes so that the real and predicted observations are as similar as possible

Error Function

state (unknown)

predicted measurements

real measurements

$$e_i(\mathbf{x}) = \mathbf{e}_i(\mathbf{x})^T \mathbf{\Omega}_i \mathbf{e}_i(\mathbf{x})$$

 $\mathbf{e}_i(\mathbf{x}) = \mathbf{z}_i - h_i(\mathbf{x})$

Giorgio's lecture

Procedure in Brief

Iterate the following steps:

 Linearize around x and compute for each measurement

$$e_i(x + \Delta x) \simeq e_i(x) + J_i \Delta x$$

- Compute the terms for the linear system $\mathbf{b} = \sum_i \mathbf{J}_i^T \Omega_i \mathbf{e}_i$ $\mathbf{H} = \sum_i \mathbf{J}_i^T \Omega_i \mathbf{J}_i$
- Solve the linear system

$$\Delta \mathbf{x}^* = -\mathbf{H}^{-1}\mathbf{b}$$

lacksquare Updating state $\mathbf{x} \leftarrow \mathbf{x} + \Delta \mathbf{x}^*$

Let's use that for SLAM

Pose-Graph-Based SLAM

- Nodes represent poses or locations
- Constraints connect the poses of the robot while it is moving
- Constraints are inherently uncertain

Pose-Graph-Based SLAM

 Observing previously seen areas generates constraints between nonsuccessive poses

The Pose-Graph

- It consists of n nodes $x = x_{1:n}$
- Each x_i is a 2D or 3D **pose** (position and orientation of the robot at time t_i)
- A constraint/edge exists between the nodes x_i and x_j if...

Create an Edge If... (1)

- ...the robot moves from x_i to x_{i+1}
- Edge corresponds to odometry

The edge represents the **odometry** measurement

Create an Edge If... (2)

• ...the robot observes the same part of the environment from \mathbf{x}_i and from \mathbf{x}_j

Measurement from \mathbf{x}_i

Measurement from \mathbf{x}_j

Create an Edge If... (2)

- ...the robot observes the same part of the environment from \mathbf{x}_i and from \mathbf{x}_j
- Construct a **virtual measurement** about the position of \mathbf{x}_j seen from \mathbf{x}_i

Edge represents the position of x_j seen from x_i based on the **observation**

Transformations

- How to express x_j relative to x_i ?
- Express this through transformations
- Let \mathbf{X}_i be transformation of the origin into \mathbf{x}_i
- Let \mathbf{X}_i^{-1} be the inverse transformation
- We can express relative transformation $\mathbf{X}_i^{-1}\mathbf{X}_i$

Transformations

- How to express x_j relative to x_i ?
- Express this through transformations
- Let \mathbf{X}_i be transformation of the origin into \mathbf{x}_i
- Let \mathbf{X}_i^{-1} be the inverse transformation
- We can express relative transformation $\mathbf{X}_i^{-1}\mathbf{X}_i$
- Transformations can be expressed using homogenous coordinates

Transformations

- Transformations can be expressed using homogenous coordinates
- Odometry-Based edge

$$(\mathbf{X}_i^{-1}\mathbf{X}_{i+1})$$

Observation-Based edge

$$(\mathbf{X}_i^{-1}\mathbf{X}_j)$$

describes "how node i sees node j"

The Edge Information Matrices

- Observations are affected by noise
- Information matrix Ω_{ij} for each edge to encode its uncertainty
- The "bigger" Ω_{ij} , the more the edge "matters" in the optimization

Question

• What should these matrices look like when moving in a long, featureless corridor?

Pose-Graph

Pose-Graph

Goal:
$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} \sum_{ij} \mathbf{e}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{e}_{ij}$$

The Error Function

Error function for a single constraint

$$\mathbf{e}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \mathsf{t2v}(\mathbf{Z}_{ij}^{-1}(\mathbf{X}_i^{-1}\mathbf{X}_j))$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\mathsf{measurement} \qquad \qquad \mathbf{x}_i \text{ seen from } \mathbf{x}_i$$

Error as a function of the whole state vector

$$\mathbf{e}_{ij}(\mathbf{x}) = \mathsf{t2v}(\mathbf{Z}_{ij}^{-1}(\mathbf{X}_i^{-1}\mathbf{X}_j))$$

Error takes a value of zero if

$$\mathbf{Z}_{ij} = (\mathbf{X}_i^{-1} \mathbf{X}_j)$$

Error Minimization Procedure

- Define the error function
- Linearize the error function
- Compute its derivative
- Set the derivative to zero
- Solve the linear system
- Iterate this procedure until convergence

Linearizing the Error Function

 We can approximate the error functions around an initial guess x via Taylor expansion

$$e_{ij}(x + \Delta x) \simeq e_{ij}(x) + J_{ij}\Delta x$$

with
$$\mathbf{J}_{ij} = \frac{\partial \mathbf{e}_{ij}(\mathbf{x})}{\partial \mathbf{x}}$$

• Does one error term $e_{ij}(x)$ depend on all state variables?

- Does one error term $e_{ij}(x)$ depend on all state variables?
 - \rightarrow No, only on \mathbf{x}_i and \mathbf{x}_j

- Does one error term $e_{ij}(x)$ depend on all state variables?
 - ightharpoonup No, only on \mathbf{x}_i and \mathbf{x}_j
- Is there any consequence on the structure of the Jacobian?

- Does one error term $e_{ij}(x)$ depend on all state variables?
 - ightharpoonup No, only on \mathbf{x}_i and \mathbf{x}_j
- Is there any consequence on the structure of the Jacobian?
 - Yes, it will be non-zero only in the rows corresponding to x_i and x_j

$$\frac{\partial \mathbf{e}_{ij}(\mathbf{x})}{\partial \mathbf{x}} = \left(\mathbf{0} \cdots \frac{\partial \mathbf{e}_{ij}(\mathbf{x}_i)}{\partial \mathbf{x}_i} \cdots \frac{\partial \mathbf{e}_{ij}(\mathbf{x}_j)}{\partial \mathbf{x}_j} \cdots \mathbf{0} \right)$$
$$\mathbf{J}_{ij} = \left(\mathbf{0} \cdots \mathbf{A}_{ij} \cdots \mathbf{B}_{ij} \cdots \mathbf{0} \right)$$

Jacobians and Sparsity

• Error $e_{ij}(x)$ depends only on the two parameter blocks x_i and x_j

$$e_{ij}(\mathbf{x}) = e_{ij}(\mathbf{x}_i, \mathbf{x}_j)$$

• The Jacobian will be zero everywhere except in the columns of \mathbf{x}_i and \mathbf{x}_i

$$\mathbf{J}_{ij} \; = \; \left(\mathbf{0} \cdots \mathbf{0} \; \left| egin{array}{c} rac{\partial \mathbf{e}(\mathbf{x}_i)}{\partial \mathbf{x}_i} \ A_{ij} \end{array}
ight| \mathbf{0} \cdots \mathbf{0} \; \left| egin{array}{c} rac{\partial \mathbf{e}(\mathbf{x}_j)}{\partial \mathbf{x}_j} \ B_{ij} \end{array}
ight| \mathbf{0} \cdots \mathbf{0}
ight)$$

Consequences of the Sparsity

• We need to compute the coefficient vector b and matrix H:

$$\mathbf{b} = \sum_{ij} \mathbf{b}_{ij} = \sum_{ij} \mathbf{J}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{e}_{ij}$$
 $\mathbf{H} = \sum_{ij} \mathbf{H}_{ij} = \sum_{ij} \mathbf{J}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{J}_{ij}$

- The sparse structure of \mathbf{J}_{ij} will result in a sparse structure of \mathbf{H}
- This structure reflects the adjacency matrix of the graph

Illustration of the Structure

Illustration of the Structure

Illustration of the Structure

Illustration of the Structure

Sparsity Effect on b

- An edge contributes to the linear system via \mathbf{b}_{ij} and \mathbf{H}_{ij}
- The coefficient vector is:

$$\mathbf{b}_{ij}^{T} = \mathbf{e}_{ij}^{T} \mathbf{\Omega}_{ij} \mathbf{J}_{ij}$$

$$= \mathbf{e}_{ij}^{T} \mathbf{\Omega}_{ij} \left(\mathbf{0} \cdots \mathbf{A}_{ij} \cdots \mathbf{B}_{ij} \cdots \mathbf{0} \right)$$

$$= \left(\mathbf{0} \cdots \mathbf{e}_{ij}^{T} \mathbf{\Omega}_{ij} \mathbf{A}_{ij} \cdots \mathbf{e}_{ij}^{T} \mathbf{\Omega}_{ij} \mathbf{B}_{ij} \cdots \mathbf{0} \right)$$

• It is non-zero only at the indices corresponding to \mathbf{x}_i and \mathbf{x}_j

Sparsity Effect on H

The coefficient matrix of an edge is:

$$egin{array}{lll} \mathbf{H}_{ij} &=& \mathbf{J}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{J}_{ij} \ &=& egin{pmatrix} \vdots \ \mathbf{A}_{ij}^T \ \vdots \ \mathbf{B}_{ij}^T \ \vdots \ \end{bmatrix} \mathbf{\Omega}_{ij} \left(& \cdots \mathbf{A}_{ij} \cdots \mathbf{B}_{ij} \cdots
ight) \ &=& egin{pmatrix} \mathbf{A}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij} & \mathbf{A}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij} \ & \mathbf{B}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij} & \mathbf{B}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij} \end{array} \end{array}$$

Non-zero only in the blocks relating i,j

Sparsity Summary

- An edge ij contributes only to the
 - ullet ith and the jth block of \mathbf{b}_{ij}
 - ullet to the blocks ii, jj, ij and ji of \mathbf{H}_{ij}
- Resulting system is sparse
- System can be computed by summing up the contribution of each edge
- Efficient solvers can be used
 - Sparse Cholesky decomposition
 - Conjugate gradients
 - ... many others

All We Need...

• Vector of the states increments:

$$\Delta \mathbf{x}^T = (\Delta \mathbf{x}_1^T \ \Delta \mathbf{x}_2^T \ \cdots \ \Delta \mathbf{x}_n^T)$$

Coefficient vector:

$$\mathbf{b}^T = \begin{pmatrix} \bar{\mathbf{b}}_1^T & \bar{\mathbf{b}}_2^T & \cdots & \bar{\mathbf{b}}_n^T \end{pmatrix}$$

System matrix:

$$\mathbf{H} = \begin{pmatrix} \bar{\mathbf{H}}^{11} & \bar{\mathbf{H}}^{12} & \cdots & \bar{\mathbf{H}}^{1n} \\ \bar{\mathbf{H}}^{21} & \bar{\mathbf{H}}^{22} & \cdots & \bar{\mathbf{H}}^{2n} \\ \vdots & \ddots & & \vdots \\ \bar{\mathbf{H}}^{n1} & \bar{\mathbf{H}}^{n2} & \cdots & \bar{\mathbf{H}}^{nn} \end{pmatrix} \text{ small blocks (or vectors) corresponding to the individual constraints}$$

small blocks

... for the Linear System

For each constraint:

- Compute error $e_{ij} = t2v(\mathbf{Z}_{ij}^{-1}(\mathbf{X}_i^{-1}\mathbf{X}_j))$
- Compute the blocks of the Jacobian:

$$\mathbf{A}_{ij} = \frac{\partial \mathbf{e}(\mathbf{x}_i, \mathbf{x}_j)}{\partial \mathbf{x}_i} \qquad \mathbf{B}_{ij} = \frac{\partial \mathbf{e}(\mathbf{x}_i, \mathbf{x}_j)}{\partial \mathbf{x}_j}$$

Update the coefficient vector:

$$\bar{\mathbf{b}}_{i}^{T} + = \mathbf{e}_{ij}^{T} \mathbf{\Omega}_{ij} \mathbf{A}_{ij} \qquad \bar{\mathbf{b}}_{j}^{T} + = \mathbf{e}_{ij}^{T} \mathbf{\Omega}_{ij} \mathbf{B}_{ij}$$

Update the system matrix:

$$\bar{\mathbf{H}}^{ii} + = \mathbf{A}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij} \qquad \bar{\mathbf{H}}^{ij} + = \mathbf{A}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij}$$

$$\bar{\mathbf{H}}^{ji} + = \mathbf{B}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij} \qquad \bar{\mathbf{H}}^{jj} + = \mathbf{B}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij}$$

Algorithm

```
optimize(x):
            while (!converged)
3:
                     (\mathbf{H}, \mathbf{b}) = \text{buildLinearSystem}(\mathbf{x})
                     \Delta \mathbf{x} = \text{solveSparse}(\mathbf{H}\Delta \mathbf{x} = -\mathbf{b})
4:
5:
                     \mathbf{x} = \mathbf{x} + \mathbf{\Delta}\mathbf{x}
            end
           return x
```

Real World Examples

The Graph with Landmarks

The Graph with Landmarks

- Nodes can represent:
 - Robot poses
 - Landmark locations
- Edges can represent:
 - Landmark observations
 - Odometry measurements
- The minimization optimizes the landmark locations and robot poses

Landmarks Observation

Expected observation (x-y sensor)

$$\widehat{\mathbf{z}}_{il}(\mathbf{x}_i, \mathbf{x}_l) = \mathbf{X}_i^{-1} \begin{pmatrix} \mathbf{x}_l \\ 1 \end{pmatrix}$$
 robot landmark

Landmarks Observation

Expected observation (x-y sensor)

$$\widehat{\mathbf{z}}_{il}(\mathbf{x}_i, \mathbf{x}_l) = \mathbf{X}_i^{-1} \begin{pmatrix} \mathbf{x}_l \\ 1 \end{pmatrix}$$
robot landmark

Error function (in Euclidian space)

$$\mathbf{e}_{il}(\mathbf{x}_i, \mathbf{x}_l) = \hat{\mathbf{z}}_{il} - \mathbf{z}_{il}$$

Bearing Only Observations

- A landmark is still a 2D point
- The robot observe only the bearing towards the landmark
- 1D Observation function

$$\widehat{\mathbf{z}}_{il}(\mathbf{x}_i,\mathbf{x}_l) = \operatorname{atan} \frac{(\mathbf{x}_l - \mathbf{t}_i).y}{(\mathbf{x}_l - \mathbf{t}_i).x} - \theta_i$$

to to to landmark robot-landmark robot angle orientation

Bearing Only Observations

Observation function

$$\widehat{\mathbf{z}}_{il}(\mathbf{x}_i,\mathbf{x}_l) = \operatorname{atan} \frac{(\mathbf{x}_l - \mathbf{t}_i).y}{(\mathbf{x}_l - \mathbf{t}_i).x} - \theta_i$$

to to to landmark robot-landmark robot angle orientation

Error function

$$\mathbf{e}_{il}(\mathbf{x}_i, \mathbf{x}_l) = \operatorname{atan} \frac{(\mathbf{x}_l - \mathbf{t}_i).y}{(\mathbf{x}_l - \mathbf{t}_i).x} - \theta_i - \mathbf{z}_{il}$$

• What is the rank of \mathbf{H}_{ij} for a 2D landmark-pose constraint?

- What is the rank of \mathbf{H}_{ij} for a 2D landmark-pose constraint?
 - The blocks of J_{ij} are a 2x3 matrices
 - \mathbf{H}_{ij} cannot have more than rank 2 $\operatorname{rank}(A^TA) = \operatorname{rank}(A^T) = \operatorname{rank}(A)$

- What is the rank of \mathbf{H}_{ij} for a 2D landmark-pose constraint?
 - The blocks of J_{ij} are a 2x3 matrices
 - \mathbf{H}_{ij} cannot have more than rank 2 $\operatorname{rank}(A^TA) = \operatorname{rank}(A^T) = \operatorname{rank}(A)$
- What is the rank of \mathbf{H}_{ij} for a bearing-only constraint?

- What is the rank of \mathbf{H}_{ij} for a 2D landmark-pose constraint?
 - The blocks of J_{ij} are a 2x3 matrices
 - \mathbf{H}_{ij} cannot have more than rank 2 $\operatorname{rank}(A^TA) = \operatorname{rank}(A^T) = \operatorname{rank}(A)$
- What is the rank of \mathbf{H}_{ij} for a bearing-only constraint?
 - The blocks of J_{ij} are a 1x3 matrices
 - ullet \mathbf{H}_{ij} has rank 1

Rank

- In landmark-based SLAM, the system can be under-determined
- The rank of H is less or equal to the sum of the ranks of the constraints
- To determine a unique solution, the system must have full rank

Under-Determined Systems

- No guarantee for a full rank system
 - Landmarks may be observed only once
 - Robot might have no odometry
- We can still deal with these situations by adding a "damping" factor to H
- Instead of solving $H\Delta x = -b$, we solve

$$(\mathbf{H} + \lambda \mathbf{I})\Delta \mathbf{x} = -\mathbf{b}$$

UAV Example

UAV Example

Summary

- The back-end part of the SLAM problem can be solved with GN or LM
- The H matrix is typically sparse
- This sparsity allows for efficiently solving the linear system
- There are several extensions (online, robust methods wrt outliers or initialization, hierarchical approaches, exploiting sparsity, multiple sensors)

YouTube Lectures

Thank you for your attention!

Slide Information

- These slides have been created by Cyrill Stachniss, Giorgio Grisetti and Wolfram Burgard evolving from different courses and tutorials that we taught over the years between 2010 and 2016.
- I tried to acknowledge all people that contributed image or video material. In case I missed something, please let me know. If you adapt this course material, please make sure you keep the acknowledgements.
- Feel free to use and change the slides. If you use them, I would appreciate an acknowledgement as well. To satisfy my own curiosity, I appreciate a short email notice in case you use the material in your course.
- My video recordings of my lectures on robot mapping are available through YouTube:

http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list

Cyrill Stachniss, cyrill.stachniss@igg.uni-bonn.de