Carnegie Mellon THE ROBOTICS INSTITUTE

Efficient Incremental Smoothing SLAM Tutorial @ ICRA 2016

Michael Kaess

May 20, 2016

The SLAM Problem (t=0)

Michael Kaess

The SLAM Problem (t=1)

The SLAM Problem (t=n-1)

Odometry measurement

The SLAM Problem (t=n)

Odometry measurement

Factor Graph Representation of SLAM

Bipartite graph with *variable nodes* and *factor nodes*

Factor Graph Representation of SLAM

Bipartite graph with *variable nodes* and *factor nodes*

Variables and Measurements

• Variables:

$$\Theta = \{x_0, x_1 \cdots x_n, l_1, l_2\}$$

Might include other quantities such as lines, planes and calibration parameters x_0 x_1 x_{n-1}

• Measurements:

 $\mathbf{Z} = \{p, u_1 \cdots u_n, m_1 \cdots m_4\}$

p is a prior to fix the gauge freedom (all other measurements are relative!)

[Dellaert & Kaess, IJRR 2006]

THE ROBOTICS INS

SLAM as a Sparse Least-Squares Problem

[Kaess et al., TRO 08]

Incremental Smoothing and Mapping (iSAM)

Solving a growing system:

- R factor from previous step
- How do we add new measurements?

Key idea:

New measurements ->

- Append to existing matrix factorization
- "Repair" using Givens rotations

Carnegie Mellon THE ROBOTICS INSTITUTE

Michael Kaess

THE ROBOTICS INS

Carnegie Mellon THE ROBOTICS INSTITUTE

Carnegie Mellon THE ROBOTICS INSTITUTE

Goal: Convert factor graph to tree structure

Why? Inference in tree structure is easy!

Two stage process:

1. Variable elimination converts factor graph to Bayes net

2. Discovering cliques provides Bayes tree

"iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree" M. Kaess et al., IJRR 2012

- Choose ordering: *I*₁, *I*₂, *x*₁, *x*₂, *x*₃
- Eliminate one node at a time

 $p(I_1, x_1, x_2) = p(I_1 | x_1, x_2) p(x_1, x_2)$

- Choose ordering: *I*₁, *I*₂, *x*₁, *x*₂, *x*₃
- Eliminate one node at a time

 $p(I_1, x_1, x_2) = p(I_1 | x_1, x_2) p(x_1, x_2)$

- Choose ordering: *I*₁, *I*₂, *x*₁, *x*₂, *x*₃
- Eliminate one node at a time

 $p(I_2, x_3) = p(I_2 | x_3) p(x_3)$

- Choose ordering: *I*₁, *I*₂, *x*₁, *x*₂, *x*₃
- Eliminate one node at a time

 $p(x_1, x_2) = p(x_1 | x_2) p(x_2)$

- Choose ordering: *I*₁, *I*₂, *x*₁, *x*₂, *x*₃
- Eliminate one node at a time

 $p(x_2, x_3) = p(x_2 | x_3) p(x_3)$

- Choose ordering: *I*₁, *I*₂, *x*₁, *x*₂, *x*₃
- Eliminate one node at a time

p(x₃)

The Bayes net has a special property: its undirected equivalent is chordal by construction

Chordal: No cycle greater than 3 that has no shortcut

Backsubstitution in the Graph

- Inference is a two step process:
 - Elimination starts at leaves and proceeds to the root

- Solving starts at root and proceeds to the leaves

Carnegie Mellon THE ROBOTICS INSTITUTE

iSAM2: Bayes Tree Example

iSAM2: Bayes Tree Example

How to update with new measurements / add variables?

iSAM2: Updating the Bayes Tree

Add new factor between x_1 and x_3

iSAM2: Updating the Bayes Tree

iSAM2: Updating the Bayes Tree

THE ROBOTICS IN

iSAM2: Updating the Bayes Tree

THE ROBO

Incremental Variable Reordering

For a small loop, what constitutes a "good" ordering?

Incremental Variable Reordering

Most recent variable at the end

expected to make future updates cheaper

- Force most recent variables to the end
- Find best ordering for remaining variables

Using constrained version of COLAMD algorithm (CCOLAMD)

Variable Reordering – Constrained COLAMD

Greedy approach

Arbitrary placement of newest variable

Constrained Ordering

Newest variables forced to the end

Number of affected variables: low high

Much cheaper!

iSAM2: Incremental Update + Variable Ordering

Variable ordering changes incrementally during update

- Not understood in matrix version
- Sparse matrix data structure not suitable

Large savings in computation

Variable Reordering – Fill-in

Incremental ordering still yields good overall ordering

- Only slightly more fill-in than batch COLAMD ordering
- Constrained ordering is worse than naïve/greedy:
 - Suboptimal ordering because of partial constraint, but cheaper to update!

iSAM2: Recovering Only Variables That Change

Again good quality and low cost are achievable:

iSAM2: Bayes Tree for Manhattan Sequence

Michael Kaess

Conclusion

- Exploit temporal structure
- Efficient incremental nonlinear least-squares solution
- Requirements:
 - Sparse graph
 - Good initial estimates