# Efficient Incremental Smoothing SLAM Tutorial @ ICRA 2016 

Michael Kaess

May 20, 2016

## The SLAM Problem ( $\mathrm{t}=0$ )



## The SLAM Problem ( $\mathrm{t}=1$ )

## Odometry measurement



Landmark 1 Landmark 2

## The SLAM Problem ( $\mathrm{t}=\mathrm{n}-1$ )

## Odometry measurement



## The SLAM Problem ( $\mathrm{t}=\mathrm{n}$ )

## Odometry measurement



## Factor Graph Representation of SLAM

Odometry measurement


Bipartite graph with variable nodes and factor nodes


## Factor Graph Representation of SLAM



Bipartite graph with variable nodes and factor nodes


## Variables and Measurements

- Variables:

$$
\Theta=\left\{x_{0}, x_{1} \cdots x_{n}, l_{1}, l_{2}\right\}
$$

Might include other quantities such as lines, planes and calibration parameters

- Measurements:


$$
\mathrm{Z}=\left\{p, u_{1} \cdots u_{n}, m_{1} \cdots m_{4}\right\}
$$

$p$ is a prior to fix the gauge freedom (all other measurements are relative!)
[Dellaert \& Kaess , IJRR 2006]

## SLAM as a Sparse Least-Squares Problem



## Incremental Smoothing and Mapping (iSAM)

## Solving a growing system:

- R factor from previous step
- How do we add new measurements?

Key idea:
New measurements ->


- Append to existing matrix factorization
- "Repair" using Givens rotations



## Matrix vs. Graph



## Measurement Jacobian



Information Matrix
Markov Random Field


Square Root Inf. Matrix


## Matrix vs. Graph



## Measurement Jacobian



Information Matrix
Markov Random Field


Square Root Inf. Matrix
Bayes Tree


## Matrix vs. Graph



## Matrix vs. Graph



## iSAM2: Bayes Tree

Goal: Convert factor graph to tree structure
Why? Inference in tree structure is easy!

## Two stage process:

1. Variable elimination converts factor graph to Bayes net

2. Discovering cliques provides Bayes tree
"iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree" M. Kaess et al., IJRR 2012


## Variable Elimination - Example

- Choose ordering: $I_{1}, I_{2}, x_{1}, x_{2}, x_{3}$
- Eliminate one node at a time



## Variable Elimination - Example

- Choose ordering: $I_{1}, I_{2}, x_{1}, x_{2}, x_{3}$
- Eliminate one node at a time



## Variable Elimination - Example

- Choose ordering: $I_{1}, I_{2}, x_{1}, x_{2}, x_{3}$
- Eliminate one node at a time



## Variable Elimination - Example

- Choose ordering: $I_{1}, I_{2}, x_{1}, x_{2}, x_{3}$
- Eliminate one node at a time



## Variable Elimination - Example

- Choose ordering: $I_{1}, I_{2}, x_{1}, x_{2}, x_{3}$
- Eliminate one node at a time



## Variable Elimination - Example

- Choose ordering: $I_{1}, I_{2}, x_{1}, x_{2}, x_{3}$
- Eliminate one node at a time



## Bayes Tree Data Structure



The Bayes net has a special property: its undirected equivalent is chordal by construction

Chordal: No cycle greater than 3 that has no shortcut

## Bayes Tree Data Structure



Step 2: Find cliques in reverse elimination order:

## Bayes Tree Data Structure



Step 2: Find cliques in reverse elimination order:


## Bayes Tree Data Structure



Step 2: Find cliques in reverse elimination order:


## Bayes Tree Data Structure



Step 2: Find cliques in reverse elimination order:


## Bayes Tree Data Structure



Step 2: Find cliques in reverse elimination order:


## Bayes Tree Data Structure



Step 2: Find cliques in reverse elimination order:


## Backsubstitution in the Graph

- Inference is a two step process:
- Elimination starts at leaves and proceeds to the root

- Solving starts at root and proceeds to the leaves



## iSAM2: Bayes Tree Example



Complexity depends on the size of the largest clique

## iSAM2: Bayes Tree Example



How to update with new measurements / add variables?

## iSAM2: Updating the Bayes Tree

Add new factor between $\mathrm{x}_{1}$ and $\mathrm{x}_{3}$

## iSAM2: Updating the Bayes Tree

Add new factor between $x_{1}$ and $x_{3}$


## iSAM2: Updating the Bayes Tree

Add new factor between $\mathrm{x}_{1}$ and $\mathrm{x}_{3}$


## iSAM2: Updating the Bayes Tree

Add new factor between $\mathrm{x}_{1}$ and $\mathrm{x}_{3}$



## Incremental Variable Reordering

For a small loop, what constitutes a "good" ordering?

Include loop closing into cut

Trajectory
Loop closing not part of cut


Affected by next update
Bayes tree


## Incremental Variable Reordering

## Most recent variable at the end

expected to make future updates cheaper


- Force most recent variables to the end
- Find best ordering for remaining variables

Using constrained version of COLAMD algorithm (CCOLAMD)

## Variable Reordering－Constrained COLAMD

Greedy approach
Arbitrary placement of newest variable


Number of affected variables： low
high

## Constrained Ordering

Newest variables forced to the end


Much cheaper！

## iSAM2: Incremental Update + Variable Ordering

Variable ordering changes incrementally during update

- Not understood in matrix version
- Sparse matrix data structure not suitable

Large savings in computation


## Variable Reordering - Fill-in

## Incremental ordering still yields good overall ordering



- Only slightly more fill-in than batch COLAMD ordering
- Constrained ordering is worse than naïve/greedy:
- Suboptimal ordering because of partial constraint, but cheaper to update!


## iSAM2: Recovering Only Variables That Change

## Again good quality and low cost are achievable:



## iSAM2: Bayes Tree for Manhattan Sequence



## Conclusion

- Exploit temporal structure
- Efficient incremental nonlinear least-squares solution
- Requirements:
- Sparse graph
- Good initial estimates

