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The SLAM Problem (t=0) 
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The SLAM Problem (t=1) 

 
 
 
 
 

 

Robot 

Landmark 1 Landmark 2 

Odometry measurement 

Landmark 
measurement 



Michael Kaess 4 

The SLAM Problem (t=n-1) 
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The SLAM Problem (t=n) 
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Factor Graph Representation of SLAM 

 
 
 
 
 

 
Bipartite graph with variable nodes and factor nodes 
 

Robot pose 

Landmark position 
Landmark 
measurement 

Odometry measurement 



Michael Kaess 7 

Factor Graph Representation of SLAM 
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Variables and Measurements 

•Variables: 
 
 

Might include other quantities such as lines, planes and 
calibration parameters 

 
•Measurements: 

 
 
𝑝 is a prior to fix the gauge freedom (all other measurements are relative!) 

Θ = {𝑥0, 𝑥1 ⋯𝑥𝑛, 𝑙1, 𝑙2} 

Z = {𝑝,𝑢1 ⋯𝑢𝑛,𝑚1⋯𝑚4} 
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SLAM as a Sparse Least-Squares Problem 
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[Dellaert & Kaess , IJRR 2006] 
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Incremental Smoothing and Mapping (iSAM) 

Solving a growing system: 
– R factor from previous step 
– How do we add new measurements? 

 
 

Key idea: 
– Append to existing matrix factorization 
– “Repair” using Givens rotations 

 

R 

R’ 

New measurements -> 

[Kaess et al., TRO 08] 
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Matrix vs. Graph 

Measurement Jacobian 
Factor Graph 
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Matrix vs. Graph 
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Matrix vs. Graph 
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Matrix vs. Graph 
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iSAM2: Bayes Tree 

Goal: Convert factor graph to tree structure 
           Why? Inference in tree structure is easy! 
Two stage process: 

1. Variable elimination converts 
factor graph to Bayes net 
 

2. Discovering cliques provides Bayes tree 
 

 
“iSAM2: Incremental Smoothing and Mapping Using 
the Bayes Tree” M. Kaess et al., IJRR 2012 

x0 x1 x2 xM ... 

lN l1 l2 
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Variable Elimination – Example 

•Choose ordering: l1, l2, x1, x2, x3 

• Eliminate one node at a time 
 
 
 
 
 
 

 p(l1,x1,x2) = p(l1|x1,x2) p(x1,x2) 

x3 x2 x1 

l2 l1 p(l1,x1,x2) 

[Kaess et al., IJRR 12] 

l1  l2  x1  x2  x3 
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Variable Elimination – Example 

•Choose ordering: l1, l2, x1, x2, x3 
• Eliminate one node at a time 

 
 
 
 
 
 

p(l1|x1,x2) 

p(x1,x2) 
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x3 x2 x1 
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[Kaess et al., IJRR 12] 
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Variable Elimination – Example 

•Choose ordering: l1, l2, x1, x2, x3 
• Eliminate one node at a time 

 
 
 
 
 
 

p(l2,x3) = p(l2|x3) p(x3) 

x3 x2 x1 

l2 l1 

[Kaess et al., IJRR 12] 

l1  l2  x1  x2  x3 
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Variable Elimination – Example 

•Choose ordering: l1, l2, x1, x2, x3 
• Eliminate one node at a time 

 
 
 
 
 
 

p(x1,x2) = p(x1|x2) p(x2) 

x3 x2 x1 

l2 l1 

[Kaess et al., IJRR 12] 
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Variable Elimination – Example 

•Choose ordering: l1, l2, x1, x2, x3 
• Eliminate one node at a time 

 
 
 
 
 
 

p(x2,x3) = p(x2|x3) p(x3) 

x3 x2 x1 

l2 l1 

[Kaess et al., IJRR 12] 

l1  l2  x1  x2  x3 
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Variable Elimination – Example 

•Choose ordering: l1, l2, x1, x2, x3 
• Eliminate one node at a time 

 
 
 
 
 
 

p(x3) 

x3 x2 x1 

l2 l1 

[Kaess et al., IJRR 12] 

l1  l2  x1  x2  x3 
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Bayes Tree Data Structure 

 
 
 
 

 

The Bayes net has a special property: its undirected 
equivalent is chordal by construction 
 
Chordal: No cycle greater than 3 that has no shortcut 

Step 1 

[Kaess et al., IJRR 12] 
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Bayes Tree Data Structure 

 
 
 
 

Step 2: Find cliques in reverse elimination order: 

Step 1 

[Kaess et al., IJRR 12] 
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Bayes Tree Data Structure 
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Bayes Tree Data Structure 
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Bayes Tree Data Structure 
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Bayes Tree Data Structure 
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Bayes Tree Data Structure 

 
 
 
 

Step 2: Find cliques in reverse elimination order: 

Step 1 

[Kaess et al., IJRR 12] 
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Backsubstitution in the Graph 

• Inference is a two step process: 
– Elimination starts at leaves and proceeds to the root 

 
 
 
 
 
 

– Solving starts at root and proceeds to the leaves 
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iSAM2: Bayes Tree Example 

Manhattan dataset (Olson) 

[Kaess et al., IJRR 12] 

Complexity depends on the size of the largest clique 
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iSAM2: Bayes Tree Example 

How to update with new measurements / add variables? 

Manhattan dataset (Olson) 

[Kaess et al., IJRR 12] 
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iSAM2: Updating the Bayes Tree 

Add new factor 
between x1 and x3 

[Kaess et al., IJRR 12] 
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iSAM2: Updating the Bayes Tree 

Add new factor 
between x1 and x3 

[Kaess et al., IJRR 12] 
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iSAM2: Updating the Bayes Tree 

Add new factor 
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[Kaess et al., IJRR 12] 



Michael Kaess 35 

iSAM2: Updating the Bayes Tree 

Add new factor 
between x1 and x3 

[Kaess et al., IJRR 12] 
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Incremental Variable Reordering 

For a small loop, what constitutes a “good” ordering? 

Bayes tree 

Trajectory 

Include loop closing into cut  Loop closing not part of cut  

Affected by next update 

[Kaess et al., IJRR 12] 
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Incremental Variable Reordering 

Most recent variable at the end 
 expected to make future updates cheaper 

• Force most recent variables to the end 
• Find best ordering for remaining 

variables 
 

Using constrained version of COLAMD 
algorithm (CCOLAMD) 

[Kaess et al., IJRR 12] 
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Variable Reordering – Constrained COLAMD 

Greedy approach 
Arbitrary placement of newest variable 

Much cheaper! 

Constrained Ordering 
Newest variables forced to the end 

Number of affected variables: 
low                                    high 

[Kaess et al., IJRR 12] 
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iSAM2: Incremental Update + Variable Ordering 

Variable ordering changes incrementally during update 
– Not understood in matrix version 
– Sparse matrix data structure not suitable 

 
Large savings in computation 

[Kaess et al., IJRR 12] 
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Variable Reordering – Fill-in 

Incremental ordering still yields good overall ordering 
 
 
 
 

 
– Only slightly more fill-in than batch COLAMD ordering 
– Constrained ordering is worse than naïve/greedy: 

• Suboptimal ordering because of partial constraint, 
but cheaper to update! 

[Kaess et al., IJRR 12] 
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iSAM2: Recovering Only Variables That Change 

Again good quality and low cost are achievable: 

[Kaess et al., IJRR 12] 
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iSAM2: Bayes Tree for Manhattan Sequence 
[Kaess et al., IJRR 12] 
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Conclusion 

• Exploit temporal structure 
• Efficient incremental nonlinear least-squares solution 
•Requirements: 

– Sparse graph 
– Good initial estimates 
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