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Abstract

We review the use of factor graphs for the modeling and solving of
large-scale inference problems in robotics. Factor graphs are a family of
probabilistic graphical models, other examples of which are Bayesian
networks and Markov random fields, well known from the statistical
modeling and machine learning literature. They provide a powerful ab-
straction that gives insight into particular inference problems, making
it easier to think about and design solutions, and write modular soft-
ware to perform the actual inference. We illustrate their use in the
simultaneous localization and mapping problem and other important
problems associated with deploying robots in the real world. We in-
troduce factor graphs as an economical representation within which
to formulate the different inference problems, setting the stage for the
subsequent sections on practical methods to solve them. We explain the
nonlinear optimization techniques for solving arbitrary nonlinear factor
graphs, which requires repeatedly solving large sparse linear systems.

The sparse structure of the factor graph is the key to understand-
ing this more general algorithm, and hence also understanding (and
improving) sparse factorization methods. We provide insight into the
graphs underlying robotics inference, and how their sparsity is affected
by the implementation choices we make, crucial for achieving highly
performant algorithms. As many inference problems in robotics are in-
cremental, we also discuss the iSAM class of algorithms that can reuse
previous computations, re-interpreting incremental matrix factoriza-
tion methods as operations on graphical models, introducing the Bayes
tree in the process. Because in most practical situations we will have
to deal with 3D rotations and other nonlinear manifolds, we also in-
troduce the more sophisticated machinery to perform optimization on
nonlinear manifolds. Finally, we provide an overview of applications of
factor graphs for robot perception, showing the broad impact factor
graphs had in robot perception.

F. Dellaert and M. Kaess. Factor Graphs for Robot Perception. Foundations and
Trends® in Robotics, vol. 6, no. 1-2, pp. 1-139, 2017.

DOI: 10.1561/2300000043.
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Introduction

This article reviews the use of factor graphs for the modeling and solv-
ing of large-scale inference problems in robotics, including the simulta-
neous localization and mapping (SLAM) problem. Factor graphs are a
family of probabilistic graphical models, other examples of which are
Bayesian networks and Markov random fields, which are well known
from the statistical modeling and machine learning literature. They
provide a powerful abstraction to give insight into particular inference
problems, making it easier to think about and design solutions, and
write modular, flexible software to perform the actual inference. Below
we illustrate their use in SLAM, one of the key problems in mobile
robotics. Other important problems associated with deploying robots
in the real world are localization, tracking, and calibration, all of which
can be phrased in terms of factor graphs, as well.

In this first section we introduce Bayesian networks and factor
graphs in the context of robotics problems. We start with Bayesian
networks as they are probably the most familiar to the reader, and
show how they are useful to model problems in robotics. However,
since sensor data is typically given to us, we introduce factor graphs
as a more relevant and economical representation. We show Bayesian
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Figure 1.1: A toy SLAM (simultaneous localization and mapping) example with
three robot poses and two landmarks. Above we schematically indicate the robot
motion with arrows, while the dotted lines indicate bearing measurements.

networks can be effortlessly converted to factor graphs by conditioning
on the sensor data. We then formulate the different inference problems
as optimization problems on factor graphs, setting the stage for the
subsequent sections on practical methods to solve them.

1.1 Inference Problems in Robotics

To act sensibly in the world, robots need to infer knowledge about the
world from their sensors, while drawing on a priori knowledge. There
are many different such inference problems in robotics, but none of
them have received as much attention as simultaneous localization and
mapping (SLAM). We discuss SLAM in detail and use it as a moti-
vating example below. Other inference problems include localization in
a known environment, tracking other actors in the environment, and
multi-robot versions of all of the above. More specialized problems are
also of interest, e.g., calibration or long-term inertial navigation.

In the SLAM problem the goal is to localize a robot using the infor-
mation coming from the robot’s sensors. In a simple case this could be
a set of bearing measurements to a set of landmarks. If the landmarks’
positions are known, this comes down to a triangulation problem remi-
niscent of how ships navigate at sea. However, the additional wrinkle in
SLAM is that we do not know the landmark map a priori, and hence we
have to infer the unknown map simultaneously with localization with
respect to the evolving map.
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Figure 1.1 shows a simple toy example illustrating the structure
of the problem graphically. A robot located at three successive poses
x1, T2, and x3 makes bearing observations on two landmarks /; and
5. To anchor the solution in space, let us also assume there is an ab-
solute position/orientation measurement on the first pose x;. Without
this there would be no information about absolute position, as bearing
measurements are all relative.

1.2 Probabilistic Modeling

Because of measurement uncertainty, we cannot hope to recover the
true state of the world, but we can obtain a probabilistic description
of what can be inferred from the measurements. In the Bayesian prob-
ability framework, we use the language of probability theory to assign
a subjective degree of belief to uncertain events. Many excellent texts
are available and listed at the end of this section that treat this subject
in depth, which we do not have space for here.

In robotics we typically need to model a belief over continuous,
multivariate random variables x € R™. We do this using probability
density functions (PDFs) p(x) over the variables z, satisfying

/p(fv)d:v =1 (1.1)

In terms of notation, we use lowercase letters for random variables, and
uppercase letters to denote sets of them.

In SLAM we want to characterize our knowledge about the un-
knowns X, in this case robot poses and the unknown landmark posi-
tions, when given a set of observed measurements Z. Using the language
of Bayesian probability, this is simply the conditional density

p(X]2), (1.2)

and obtaining a description like this is called probabilistic inference.
A prerequisite is to first specify a probabilistic model for the variables
of interest and how they give rise to (uncertain) measurements. This is
where probabilistic graphical models enter the picture.

Probabilistic graphical models provide a mechanism to com-
pactly describe complex probability densities by exploiting the struc-
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ture in them [121]. In particular, high-dimensional probability densities
can often be factorized as a product of many factors, each of which is a
probability density over a much smaller domain. This will be explicitly
modeled when we introduce factor graphs, later in this section. How-
ever, below we first introduce a different and perhaps more familiar
graphical model, Bayesian networks, as they provide a gentler intro-
duction into generative modeling.

1.3 Bayesian Networks for Generative Modeling

Bayesian networks are an expedient graphical language for modeling
inference problems in robotics. This is because it is often easy to think
about how measurements are generated by sensors. For example, if
someone tells us the exact location of a landmark and the pose of a
robot, as well as the geometry of its sensor configuration, it is not hard
to predict what the measurement should be. And we can either assume
or learn a noise model for a particular sensor. Measurement predictions
and noise models are the core elements of a generative model, which is
well matched with the Bayesian network framework.

Formally, a Bayesian network [163] or Bayes net is a directed
graphical model where the nodes represent variables ;. We denote the
entire set of random variables of interest as © = {6;...6,}. A Bayes
net then defines a joint probability density p(©) over all variables © as
the product of conditional densities associated with each of the nodes:

p(©) 2 [ p(b)lm). (1.3)

In the equation above p(f;|mr;) is the conditional density associated
with node 6;, and 7; is an assignment of values to the parents of 0;.
Hence, in a Bayes net, the factorization of the joint density is dictated
by its graph structure, in particular the node-parent relationships.

As an example, let us consider the Bayes net associated with the
toy SLAM example from Figure 1.1. In this case the random variables
of interest are © = {X, Z}, i.e., the unknown poses and landmarks X,
as well as the measurements Z. The corresponding Bayes net for this
toy example is shown in Figure 1.2, with the measurements shown in
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Figure 1.2: Bayes net for the toy SLAM example from Figure 1.1. Above we
showed measurements with square nodes, as these variables are typically observed.

boxes as they are observed. Per the general definition of Bayes nets, the
joint density p(X, Z) = p(x1, x2,x3,11,l2, 21, 29, 23, 24) is obtained as a
product of conditional densities:

p(X, Z) = p(z1)p(wa|z1)p(2s|z2) (1.4)
x p(l)p(l2) (1.5)
x p(z1|z1) (1.6)
X p(ze|x1,l1)p(23|z2, l1)p(24| 23, I2). (1.7)

One can see that the joint density in this case consists of four qualita-
tively different sets of factors:

o A “Markov chain” p(x1)p(z2|z1)p(x3|z2) on the poses x1, xo, and
x3 [Eq. 1.4]. The conditional densities p(x;1|z;) might represent
prior knowledge or can be derived from known control inputs.

o “Prior densities” p(l1) and p(l2) on the landmarks [, and I3 (often
omitted in SLAM settings when there is no prior map) [Eq. 1.5].

o A conditional density p(z1|z1) corresponding to the absolute pose
measurement on the first pose z; [Eq. 1.6].

o Last but not least, a product of three conditional densities,
p(ze|x1, l1)p(23|22, 11)p(24]23, [2), corresponding to the three bear-
ing measurements on the landmarks /; and ls from the poses x1,
x9, and z3 [Eq. 1.7].
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Note that the graph structure makes an explicit statement about data
association, i.e., for every measurement z; we know which landmark
it is a measurement of. While it is possible to model unknown data
association in a graphical model context, in this text we assume that
data association is given to us as the result of a pre-processing step.

1.4 Specifying Probability Densities

The exact form of the densities above depends very much on the appli-
cation and the sensors used. The most often-used densities involve the
multivariate Gaussian distribution, with probability density

1 1
N D) = osen{ -5 lo-ulk), (09

where p € R” is the mean, Y is an n X n covariance matrix, and

10wl = (0 —m) =7 (60— p) (1.9)
denotes the squared Mahalanobis distance. For example, priors on un-
known quantities are often specified using a Gaussian density.

In many cases it is both justified and convenient to model mea-
surements as corrupted by zero-mean Gaussian noise. For example, a
bearing measurement from a given pose x to a given landmark [ would
be modeled as

z = h(z,l) +n, (1.10)
where h(.) is a measurement prediction function, and the noise 7
is drawn from a zero-mean Gaussian density with measurement covari-
ance R. This yields the following conditional density p(z|x,l) on the
measurement z:

(el ) = Nl ), R) = o exp {3 e, ) - 2}
|27 R 2
(1.11)
The measurement functions h(.) are often nonlinear in practical
robotics applications. Still, while they depend on the actual sensor
used, they are typically not difficult to reason about or write down.
The measurement function for a 2D bearing measurement is simply

h(z,l) = atan2(ly — zy,l; — ), (1.12)
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where atan2 is the well-known two-argument arctangent variant. Hence,
the final probabilistic measurement model p(z|z,[) is obtained as

1 1
p(zlx,l) = W exp {—2 |latan2(ly, — zy,ly — z4) — zH%} . (1.13)

Note that we will not always assume Gaussian measurement noise: to
cope with the occasional data association mistake, for example, many
authors have proposed the use of robust measurement densities, with
heavier tails than a Gaussian density.

Not all probability densities involved are derived from measure-
ments. For example, in the toy SLAM problem we have densities of the
form p(x¢41|z¢), specifying a probabilistic motion model which the
robot is assumed to obey. This could be derived from odometry mea-
surements, in which case we would proceed exactly as described above.
Alternatively, such a motion model could arise from known control in-
puts w. In practice, we often use a conditional Gaussian assumption,

1
(i1l ur) = exp {—2 g (e, ue) — xt-l—lHQQ} ] (1.14)

1
27|
where ¢(.) is a motion model, and @ a covariance matrix of the appro-
priate dimensionality, e.g., 3 x 3 in the case of robots operating in the
plane. Note that for robots operating in three-dimensional space, we
will need slightly more sophisticated machinery to specify densities on
nonlinear manifolds such as SE(3), as discussed in Section 6.

1.5 Simulating from a Bayes Net Model

As an aside, once a probability model is specified as a Bayes net, it
is easy to simulate from it. This is the reason why Bayes nets are the
language of choice for generative modeling, and we mention it here
because it is often beneficial to think about this when building models.

In particular, to simulate from P(©) = [1,; P(8;]m;), one simply
has to topologically sort the nodes in the graph and sample in such a
way that all parent values m; are generated before sampling ¢; from
the conditional P(6;|r;), which can always be done. This technique is
called ancestral sampling [16].
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As an example, let us again consider the SLAM toy problem. Even
in this tiny problem it is easy to see how the factorization of the joint
density affords us to think locally rather than having to think globally.
Indeed, we can use the Bayes net from Figure 1.2 as a guide to simulate
from the joint density p(z1, z2, x3,11,l2, 21, 22, 23, 24) by respectively

1. sampling the poses x1, x2, and x3 from p(z1)p(z2|z1)p(x3|2),
i.e., simulate a robot trajectory;

2. sampling I; and ls from p(l;) and p(l3), i.e., generate some plau-
sible landmarks;

3. sampling the measurements from the conditional densities

p(z1|w1), p(ze|z1,l1), p(zs|ee,l1), and p(z4]z3,l2), ie., simulate
the robot’s sensors.

Many other topological orderings are possible. For example, steps 1 and
2 above can be switched without consequence. Also, we can generate
the pose measurement z; at any time after x; is generated, etc.

1.6 Maximum a Posteriori Inference

Now that we have the means to model the world, we can infer knowledge
about the world when given information about it. Above we saw how
to fully specify a joint density P(©) in terms of a Bayes net: its factor-
ization is given by its graphical structure, and its exact computational
form by specifying the associated priors and conditional densities.

In robotics we are typically interested in the unknown state vari-
ables X, such as poses and/or landmarks, given the measurements Z.
The most often used estimator for these unknown state variables X
is the maximum a posteriori or MAP estimate, so named because
it maximizes the posterior density p(X|Z) of the states X given the
measurements Z:

XMAP - —  argmaxp(X|2) (1.15)
X

— argmax 22X

n o(7) (1.16)
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The second equation above is Bayes’ law, and expresses the posterior
as the product of the measurement density p(Z|X) and the prior p(X)
over the states, appropriately normalized by the factor p(Z).

However, a different expression of Bayes law is the key to under-
standing the true computation underlying MAP inference. Indeed, all
of the quantities in Bayes’ law as stated in (1.16) can in theory be
computed from the Bayes net. However, as the measurements Z are
given, the normalization factor p(Z) is irrelevant to the maximization
and can be dropped. In addition, while the conditional density p(Z|X)
is a properly normalized Gaussian density in Z, we are only concerned
with it as a function in the unknown states X. Hence the second and
more important form of Bayes’ law:

XMAP — argmax (X; Z)p(X). (1.17)
X

Here I(X;Z) is the likelihood of the states X given the mea-
surements 7, and is defined as any function proportional to p(Z|X):

(X Z) x p(Z]X). (1.18)

The notation I(X; Z) emphasizes the fact that the likelihood is a func-
tion of X and not Z, which acts merely as a parameter in this context.

It is important to realize that conditioning on the measurements
yields likelihood functions that do not look like Gaussian densities, in
general. To see this, consider again the 2D bearing measurement density
in Equation 1.13. When written as a likelihood function we obtain

1
l(x,1;2) x exp {—2 |latan2(ly, — zy,ly — 24) — ZH?%} , (1.19)

which is Gaussian in z (after normalization), but decidedly not so in
any other variable. Even in the case of a linear measurement function,
the measurement z is often of lower dimensionality than the unknown
variables it depends on. Hence, conditioning on it results in a degen-
erate Gaussian density on the unknowns, at best; it is only when we
fuse the information from several measurements that the density on
the unknowns becomes a proper probability density. In the case that
not enough measurements are available to fully constrain all variables,
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MAP inference will fail, because a unique maximizer of the posterior
(1.17) is not available.

All of the above motivates the introduction of factor graphs in the
next section. The reasons for introducing a new graphical modeling lan-
guage are (a) the distinct division between states X and measurements
Z, and (b) the fact that we are more interested in the non-Gaussian
likelihood functions, which are not proper probability densities. Hence,
the Bayes net language is rather mismatched with the actual optimiza-
tion problem that we are concerned with. Finally, we will see in Section
3 that the structure of factor graphs is intimately connected with the
computational strategies to solve large-scale inference problems.

1.7 Factor Graphs for Inference

While Bayes nets are a great language for modeling, factor graphs are
better suited to perform inference. Like Bayes nets, factor graphs allow
us to specify a joint density as a product of factors. However, they are
more general in that they can be used to specify any factored function
(X)) over a set of variables X, not just probability densities.

To motivate this, consider performing MAP inference for the toy
SLAM example. After conditioning on the observed measurements 7,
the posterior p(X|Z) can be re-written using Bayes’ law (1.16) as

p(X|Z) o p(z1)p(z2|z1)p(as|zs) (1.20)
x p(l1)p(l2) (1.21)

x (z1;21) ( )

(1.23)

X U(x1, 1 22) (22, l1; 23) (23, l2; 24).

It is clear that the above represents a factored probability density on
the unknowns only, albeit unnormalized.

To make this factorization explicit, we use a factor graph. Figure
1.3 introduces the corresponding factor graph by example: all unknown
states X, both poses and landmarks, have a node associated with them,
as in the Bayes net. However, unlike the Bayes net case, measurements
are not represented explicitly as they are given, and hence not of inter-
est. Rather than associating each node with a conditional density, in
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Figure 1.3: Factor graph resulting from the Bayes net in Figure 1.2 on page 6 after
conditioning on the measurements 7.

factor graphs we explicitly introduce an additional node type to rep-
resent every factor in the posterior p(X|Z). In the figure, each small
black node represents a factor, and—importantly—is connected to only
those state variables it is a function of. For example, the likelihood fac-
tor (s, l2; z4) is connected only to the variable nodes x3 and 5. Using
this as a guide, it should be easy to associate each of the 9 factor nodes
in the graph with the 9 factors in the posterior p(X|Z2).

Formally a factor graph is a bipartite graph F' = (U, V, £) with two
types of nodes: factors ¢; € U and variables z; € V. Edges ¢;; € £ are
always between factor nodes and variables nodes. The set of variable
nodes adjacent to a factor ¢; is written as N(¢;), and we write X;
for an assignment to this set. With these definitions, a factor graph F
defines the factorization of a global function ¢(X) as

o(X) = [[6:(X5). (1.24)

In other words, the independence relationships are encoded by the edges
ei; of the factor graph, with each factor ¢; a function of only the vari-
ables X; in its adjacency set N (¢;).

Every Bayes net can be trivially converted to a factor graph. Recall
that every node in a Bayes net denotes a conditional density on the
corresponding variable and its parent nodes. Hence, the conversion is
quite simple: every Bayes net node splits in both a variable node and a
factor node in the corresponding factor graph. The factor is connected
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to the variable node, as well as the variable nodes corresponding to
the parent nodes in the Bayes net. If some nodes in the Bayes net are
evidence nodes, i.e., they are given as known variables, we omit the
corresponding variable nodes: the known variable simply becomes a
fixed parameter in the corresponding factor.

Following this recipe, in the simple SLAM example we obtain the
following factor graph factorization,

(L1, lo, 21, 22, :L‘g) = ¢1(x1)p2(x2, 1) ds3(x3, T2) (1.25)
Pa(l1)ds(l2) (1.26)

X ¢>6(931) (1.27)

x ¢7(z1, 1) ds (w2, 11) P (3, l2), (1.28)

where the correspondence between the factors and the original proba-
bility densities and/or likelihood factors in Equations 1.20-1.23 should
be obvious, e.g., ¢7(x1,l1) = l(z1,11; 22) < p(z2|z1, lh).

1.8 Computations Supported by Factor Graphs

While in the remainder of this document we concentrate on fast op-
timization methods for SLAM, it is of interest to ask what types of
computations are supported by factor graphs in general. Converting a
Bayes net p(X, Z) to a factor graph (by conditioning on the evidence
Z) yields a representation of the posterior ¢(X) x p(X|Z), and it is
natural to ask what we can do with this. While in SLAM we will be
able to fully exploit the specific form of the factors to perform very
fast inference, some domain-agnostic operations that are supported are
evaluation, several optimization methods, and sampling.

Given any factor graph defining an unnormalized density ¢(X), we
can easily evaluate it for any given value, by simply evaluating every
factor and multiplying the results. Often it is easier to work in log
or negative log-space because of the small numbers involved, in which
case we have to sum as many numbers as there are factors. Evaluation
opens up the way to optimization, and nearly all gradient-agnostic
optimization methods can be applied. If the factors are differentiable
functions in continuous variables, gradient-based methods can quickly
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find local maxima of the posterior. In the case of discrete variables,
graph search methods can be applied, but they can often be quite costly.
The hardest problems involve both discrete and continuous variables.
While local or global maxima of the posterior are often of most
interest, sampling from a probability density can be used to visualize,
explore, and compute statistics and expected values associated with
the posterior. However, the ancestral sampling method from Section
1.5 only applies to directed acyclic graphs. The general sampling algo-
rithms that are most useful for factor graphs are Markov chain Monte
Carlo (MCMC) methods. One such method is Gibbs sampling, which
proceeds by sampling one variable at a time from its conditional den-
sity given all other variables it is connected to via factors. This assumes
that this conditional density can be easily obtained, however, which is
true for discrete variables but far from obvious in the general case.
Below we use factor graphs as the organizing principle for all sec-
tions on specific inference algorithms. They aptly describe the inde-
pendence assumptions and sparse nature of the large nonlinear least-
squares problems arising in robotics, and that is where we start in the
next section. But their usefulness extends far beyond that: they are
at the core of the sparse linear solvers we use as building blocks, they
clearly show the nature of filtering and incremental inference, and lead
naturally to distributed and/or parallel versions of robotics. Before we
dive in, we first lay out the roadmap for the remainder of the document.

1.9 Roadmap

In the next section, Section 2, we discuss nonlinear optimization
techniques for solving the map inference problem in SLAM. Doing so
requires repeatedly solving large sparse linear systems, but we do not go
into detail on how this is done. The resulting graph-based optimization
methods are now the most popular methods for the SLAM problem,
at least when solved offline or in batch.

In Section 3 we make the connection between factor graphs and
sparse linear algebra more explicit. While there exist efficient soft-
ware libraries to solve sparse linear systems, these are but instantiations
of a much more general algorithm: the elimination algorithm.
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In Section 4 we discuss elimination ordering strategies and their
effect on performance. This will also allow us to understand, in Section
5, the effects of marginalizing out variables, and its possibly delete-
rious effect on sparsity, especially in the SLAM case. Other inference
problems in robotics do benefit from only keeping track of the most re-
cent state estimate, which leads to filtering and/or fixed-lag smoothing
algorithms.

In Section 5 we discuss incremental factorization and re-
interpret it in terms of graphical models. We introduce the Bayes tree to
establish a connection between sparse matrix factorization and graphi-
cal models, based on which incremental smoothing and mapping algo-
rithms are developed.

While in many robotics problems we can get away with vector-
valued unknowns, 3D rotations and other nonlinear manifolds need
slightly more sophisticated machinery. Hence, in Section 6 we discuss
optimization on manifolds.

1.10 Bibliographic Remarks

The SLAM problem [174, 129, 186] has received considerable attention
in mobile robotics as it is one way to enable a robot to explore and nav-
igate previously unknown environments. In addition, in many applica-
tions the map of the environment itself is the artifact of interest, e.g., in
urban reconstruction, search-and-rescue operations, and battlefield re-
connaissance. As such, it is one of the core competencies of autonomous
robots [187]. A comprehensive review was done by Durrant-Whyte and
Bailey in 2006 [59, 6] and more recently by Cadena et al. [19], but the
field is still generating a steady stream of contributions at the top-tier
robotics conferences.

The foundational book by Pearl [163] is still one of the best places
to read about Bayesian probability and Bayesian networks, as is the
tome by Koller and Friedman [121], and the book by Darwiche [38].
Although in these works the emphasis is (mostly) on problems with
discrete-valued unknowns, they can just as easily be applied to contin-
uous estimation problems like SLAM.



16 Introduction

Because of their ability to represent the unnormalized posterior for
MAP inference problems, factor graphs are an ideal graphical model
for probabilistic robotics. However, factor graphs are also used exten-
sively in a variety of other computer science fields, including Boolean
satisfiability, constraint satisfaction, and machine learning. Excellent
overviews of factor graphs and their applications are given by Kschis-
chang et al. [125], and Loeliger [139].

Markov chain Monte Carlo (MCMC) and Gibbs sampling provide
a way to sample over high-dimensional state-spaces as described by
factor graphs, and are discussed in [151, 82, 55].



2

Smoothing and Mapping

Below we discuss the smoothing and mapping (SAM) algorithm, which
is representative of the state of the art in batch solutions for SLAM.
We explain the nonlinear optimization techniques for solving arbitrary
nonlinear factor graphs, which requires repeatedly solving large sparse
linear systems. In this section we will not go into detail on sparse linear
algebra, but defer that to the next section.

2.1 Factor Graphs in SLAM

The factor graph for a more realistic SLAM problem than the toy ex-
ample from the previous section could look something like Figure 2.1.
This graph was created by simulating a 2D robot, moving in the plane
for about 100 time steps, as it observes landmarks. For visualization
purposes each robot pose and landmark is rendered at its ground truth
position in 2D. With this, we see that the odometry factors form a
prominent, chain-like backbone, whereas off to the sides binary likeli-
hood factors are connected to the 20 or so landmarks. All factors in
such SLAM problems are typically nonlinear, except for priors.

17
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Figure 2.1: Factor graph for a larger, simulated SLAM example.

Simply examining the factor graph reveals a great deal of structure
by which we can gain insight into a particular instance of the SLAM
problem. First, there are landmarks with a large number of measure-
ments, which we expect to be pinned down very well. Others have only
a tenuous connection to the graph, and hence we expect them to be less
well determined. For example, the lone landmark near the bottom-right
has only a single measurement associated with it: if this is a bearing-
only measurement, many assignments of a 2D location to the landmark
will be equally “correct”. This is the same as saying that we have infi-
nite uncertainty in some subset of the domain of the unknowns, which
is where prior knowledge should come to the rescue.

MAP inference in SLAM is exactly the process of determining those
values for the unknowns that maximally agree with the information
present in the uncertain measurements. In real life we are not given
the ground truth locations for the landmarks, nor the time-varying pose
of the robot, although in many practical cases we might have a good
initial estimate. Below we show how to find an optimal assignment,
the MAP estimate, through nonlinear optimization over the unknown
variables in the factor graph.
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2.2 MAP Inference for Nonlinear Factor Graphs

We now show that MAP inference for SLAM problems with Gaussian
noise models is equivalent to solving a nonlinear least-squares problem.
Indeed, for an arbitrary factor graph, MAP inference comes down to
maximizing the product (1.24) of all factor graph potentials:

XMAP - — arg;nax¢(X) (2.1)

= argmaxH ®i(X5). (2.2)
X i
Let us for now assume that all factors are of the form
1
6:06) o< exp {3 Ia(%:) ~ i, | (2:3)

which include both simple Gaussian priors and likelihood factors de-
rived from measurements corrupted by zero-mean, normally distributed
noise. Taking the negative log of (2.2) and dropping the factor 1/2 allows
us to instead minimize a sum of nonlinear least-squares:

XMAP _ arg)rglinz | hi(Xi) — zz\li . (2.4)
i

Minimizing this objective function performs sensor fusion through the
process of combining several measurement-derived likelihood factors,
and possibly several priors, to uniquely determine the MAP solution
for the unknowns.

An important and non-obvious observation is that the factors in
(2.4) typically represent rather uninformed densities on the involved
unknown variables X;. Indeed, except for simple prior factors, the mea-
surements z; are typically of lower dimension than the unknowns Xj.
In those cases, the factor by itself accords the same likelihood to an
infinite subset of the domain of X;. For example, a 2D measurement
in a camera image is consistent with an entire ray of 3D points that
project to the same image location. Only when multiple measurements
are combined can we hope to recover a unique solution for the variables.
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Even though the functions h; are nonlinear, if we have a decent
initial guess available, then nonlinear optimization methods such as
Gauss-Newton iterations or the Levenberg-Marquardt (LM) algorithm
will be able to converge to the global minimum of (2.4). They do so
by solving a succession of linear approximations to (2.4) in order to
approach the minimum [50]. Hence, in the following we first consider
how to build a linearized version of the nonlinear problem.

2.3 Linearization

We can linearize all measurement functions h;(-) in the nonlinear least-
squares objective function (2.4) using a simple Taylor expansion,

hi(X:) = hi(X? + Ay) = hi(XD) + H; A, (2.5)

where the measurement Jacobian H; is defined as the (multivariate)
partial derivative of h;(.) at a given linearization point X,

H, = =220 2.6
! 0X; |yo (2.6)

and A; 2 X; — Xio is the state update vector. Note that we make
an assumption that X; lives in a vector-space or, equivalently, can be
represented by a wvector. This is not always the case, e.g., when some of
the unknown states in X represent 3D rotations or other more complex
manifold types. We will revisit this issue in Section 6.

Substituting the Taylor expansion (2.5) into the nonlinear least-
squares expression (2.4) we obtain a linear least-squares problem in
the state update vector A,

2
hi(XP) + HiAi — z; . (2.7)

i

A = argflinZ‘

where z; — h;(X?) is the prediction error at the linearization point,
i.e. the difference between actual and predicted measurement. Above
A* denotes the solution to the locally linearized problem.
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By a simple change of variables we can drop the covariance matrices
¥, from this point forward: with ©/2 the matrix square root of ¥ we
can rewrite the Mahalanobis norm of some term e as follows:

[El 2Ty le= (271/2€)T (271/26) = HZfl/QeHz. (2.9)

Hence, we can eliminate the covariances ¥; by pre-multiplying the Ja-
-1/2,

cobian H; and the prediction error in each term in (2.8) with ¥, '~

A = 37V, (2.10)

1

b = %7 (2 hi(XD)) (2.11)

7

This process is a form of whitening. For example, in the case of scalar
measurements it simply means dividing each term by the measure-
ment standard deviation o;. Note that this eliminates the units of the
measurements (e.g. length, angles) so that the different rows can be
combined into a single cost function.

We finally obtain the following standard least-squares problem,

A* = argmin ) 4D — bil; (2.12)
A i

= argmin ||[AA —b|3, (2.13)
A

where A and b are obtained by collecting all whitened Jacobian matrices
A; and whitened prediction errors b; into one large matrix A and right-
hand-side (RHS) vector b, respectively.

The Jacobian A is a large but sparse matrix, with a block structure
that mirrors the structure of the underlying factor graph. We will ex-
amine this sparsity structure in detail in Section 3. First, however, we
review the more classical linear algebra approach below.

2.4 Direct Methods for Least-Squares

For a full-rank m x n matrix A, with m > n, the unique least-squares
solution to (2.13) can be found by solving the normal equations:

(ATA) A" = Ao, (2.14)
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This is normally done by factoring the information matrix A, defined
and factored as follows:

A2 ATA=R'R. (2.15)

Above, the Cholesky triangle R is an upper-triangular n x n matrix!
and is computed using Cholesky factorization, a variant of LU fac-
torization for symmetric positive definite matrices. After this, A* can
be found by solving first

Rly=A"b (2.16)

and then

RA* =y (2.17)
by forward and back-substitution. For dense matrices Cholesky factor-
ization requires n>/3 flops, and the entire algorithm, including comput-
ing half of the symmetric AT A, requires (m + n/3)n? flops. One could
also use LDL factorization, a variant of Cholesky decomposition that
avoids the computation of square roots.

An alternative to Cholesky factorization that is more accurate and
more numerically stable is to proceed via QR-factorization, which
works without computing the information matrix A. Instead, we com-
pute the QR-factorization of A itself along with its corresponding RHS:

A:Q[?] [i]:QTb. (2.18)

Here @ is an m x m orthogonal matrix, d € R", e € R™" and R
is the same upper-triangular Cholesky triangle. The preferred method
for factorizing a dense matrix A is to compute R column by column,
proceeding from left to right. For each column j, all non-zero elements
below the diagonal are zeroed out by multiplying A on the left with
a Householder reflection matrix H;. After n iterations A is com-
pletely factorized:

H,...HHA=QTA= [ Jg ] . (2.19)

!Some treatments, including [84], define the Cholesky triangle as the lower-
triangular matrix L = R, but the other convention is more convenient here.
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The orthogonal matrix ) is not usually formed: instead, the trans-
formed RHS Qb is computed by appending b as an extra column to
A. Because the @) factor is orthogonal, we have

2
|AA = b]3 = ||QTAA = QT8|| = [RA —d|5 +lle]3,  (2:20)

where we made use of the equalities from Equation 2.18. Clearly, HeH%
will be the least-squares sum of squared residuals, and the least-squares
solution A* can be obtained by solving the triangular system

RA*=d (2.21)

via back-substitution. The cost of QR is dominated by the cost of the
Householder reflections, which is 2(m — n/3)n?. Comparing this with
Cholesky, we see that both algorithms require O(mn?) operations when
m > n, but that QR-factorization is slower by a factor of 2.

Note that the upper-triangular factor R obtained using QR factor-
ization is the same (up to possible sign changes on the diagonal) as
would be obtained by Cholesky factorization, as

-
ATA= [ g] Q'Q [ g ] =R'R, (2.22)
where we again made use of the fact that @) is orthogonal.

There are efficient algorithms for factorizing large sparse matrices,
for both QR and Cholesky variants. Depending on the amount of non-
zeros and on the sparsity structure, the cost of a sparse factorization
can be far lower than its dense equivalent. Efficient software implemen-
tations are available, e.g., CHOLMOD [28] and SuiteSparseQR [39],
which are also used under the hood by MATLAB. In practice sparse
Cholesky and LDL factorization outperform QR factorization on sparse
problems as well, and not just by a constant factor.

In summary, the optimization problem associated with SLAM can
be concisely stated in terms of sparse linear algebra. It comes down to
factorizing either the information matrix A or the measurement Jaco-
bian A into square root form. Because they are based on matrix square
roots derived from the smoothing and mapping (SAM) problem, we

have referred to this family of approaches as square root SAM, or
VSAM for short [46, 48].
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2.5 Nonlinear Optimization for MAP Inference

Nonlinear least-squares problems cannot be solved directly, but require
an iterative solution starting from a suitable initial estimate. A variety
of algorithms exist that differ in how they locally approximate the cost
function, and in how they find an improved estimate based on that
local approximation. As a reminder, in our case the cost function is

9(X) £ 3 11hi(Xi) 2l (2.23)

and corresponds to a nonlinear factor graph derived from the measure-
ments along with prior densities on some or all unknowns.

All of the algorithms share the following basic structure: They start
from an initial estimate X°. In each iteration, an update step A is
calculated and applied to obtain the next estimate X' = X* + A.
This process ends when certain convergence criteria are reached, such
as the change A falling below a small threshold.

2.5.1 Steepest Descent

Steepest descent (SD) or gradient descent uses the direction of steepest
descent at the current estimate to calculate the following update step:

Here the negative gradient is used to identify the direction of steep-
est descent. For the nonlinear least-squares objective function (2.23),
we compute the Jacobian A as in Section 2.3 to locally approx-
imate g(X) =~ [AX —X")— ng and obtain the exact gradient
Vg (X)|x—x: = —2ATb at the linearization point X'.

The step size a needs to be carefully chosen to balance between safe
updates and reasonable convergence speed. An explicit line search can
be performed to find a minimum in the given direction. SD is a simple
algorithm, but suffers from slow convergence near the minimum.

2.5.2 Gauss-Newton

Gauss-Newton (GN) provides faster convergence by using a second or-
der update. GN exploits the special structure of the nonlinear least-
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squares problem to approximate the Hessian by the square of the Ja-
cobian as AT A. The GN update step is obtained by solving the normal
equations (2.14)

ATAN,, = ATb (2.25)
by any of the methods in Section 2.4. For a well-behaved (i.e. nearly
quadratic) objective function and a good initial estimate, Gauss-
Newton exhibits nearly quadratic convergence. If the quadratic fit is
poor, a GN step can lead to a new estimate that is further from the
minimum and subsequent divergence.

2.5.3 Levenberg-Marquardt

The Levenberg-Marquardt (LM) algorithm allows for iterating multiple
times to convergence while controlling in which region one is willing to
trust the quadratic approximation made by Gauss-Newton. Hence, such
a method is often called a trust region method.

To combine the advantages of both the SD and GN methods, Lev-
enberg [133] proposed to modify the normal equations (2.14) by adding
a non-negative constant A € R™ U {0} to the diagonal

(ATA+ A1) Ay = AT, (2.26)

Note that for A = 0 we obtain GN, and for large A we approximately
obtain A* ~ %ATb, an update in the negative gradient direction of
the cost function ¢ (2.23). Hence, LM can be seen to blend naturally
between the Gauss-Newton and Steepest Descent methods.

Marquardt [144] later proposed to take into account the scaling of
the diagonal entries to provide faster convergence:

(ATA+ Adiag(ATA)) Ay = AT, (2.27)

This modification causes larger steps in the steepest descent direction
if the gradient is small (nearly flat directions of the objective func-
tion) because there the inverse of the diagonal entries will be large.
Conversely, in steep directions of the objective function the algorithm
becomes more cautious and takes smaller steps. Both modifications of
the normal equations can be interpreted in Bayesian terms as adding
a zero-mean prior to the system.
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Algorithm 2.1 The Levenberg-Marquardt algorithm

1: function LM(g(), X°) > quadratic cost function g(),
> initial estimate X

22 A=10"*

3: t=20

4: repeat

5: A, b + linearize g(X) at X*

6: A < solve (ATA + )\diag(ATA)> A=ATbH

7 if g(X' + A)<g(X?) then

8: X=Xt + A > accept update
9: A+ )\/10
10: else

11: Xt = xt > reject update
12: A= Ax10

13: t+—t+1
14: until convergence
15: return X' > return latest estimate

The LM algorithm is given in Algorithm 2.1. A key difference be-
tween GN and LM is that the latter rejects updates that would lead to
a higher sum of squared residuals. A rejected update means that the
nonlinear function is locally not well-behaved, and smaller steps are
needed. This is achieved by heuristically increasing the value of A, for
example by multiplying its current value by a factor of 10, and resolving
the modified normal equations. On the other hand, if a step leads to a
reduction of the sum of squared residuals, it is accepted, and the state
estimate is updated accordingly. In this case, A is reduced (by dividing
by a factor of 10), and the algorithm repeats with a new linearization
point, until convergence.

2.5.4 Dogleg Minimization

Powell’s dogleg (PDL) algorithm [167] can be a more efficient alterna-
tive to LM [140]. A major disadvantage of the Levenberg-Marquardt
algorithm is that in case a step gets rejected, the modified information
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Gradient\descent update

Current
estimate

Dog leg update

Trust region
Gauss-Newton update

Figure 2.2: Powell’s dogleg algorithm combines the separately computed Gauss-
Newton and gradient descent update steps.

matrix has to be refactored, which is the most expensive component of
the algorithm. Hence, the key idea behind PDL is to separately com-
pute the GN and SD steps, and then combine appropriately. If the step
gets rejected, the directions of the steps are still valid, and they can be
combined in a different way until a reduction in the cost is achieved.
Hence, each update of the state estimate only involves one matrix fac-
torization, as opposed to several.

Figure 2.2 shows how the GN and SD steps are combined. The com-
bined step starts with the SD update, followed by a sharp bend (hence
the term dogleg) towards the GN update, but stopping at the trust
region boundary. Unlike LM, PDL maintains an explicit trust region
A within which we trust the linear assumption. The appropriateness
of the linear approximation is determined by the gain ratio

g(X") —g(X"+A)
L(0) - L(A)

p= (2.28)
where L(A) = ATAA — A'b is the linearization of the nonlinear
quadratic cost function g from Equation 2.23 at the current estimate
Xt If p is small, i.e. p < 0.25, then the cost has not reduced as pre-
dicted by the linearization and the trust region is reduced. On the other
hand, if the reduction is as predicted (or better), i.e. p > 0.75, then
the trust region is increased depending on the magnitude of the update
vector, and the step is accepted.

Both algorithms, GN and PDL, require the measurement Jaco-
bian to be full rank so that AT A is invertible. When encountering
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under-constrained systems (insufficient measurements) or for numeri-
cally poorly constrained systems, the LM algorithm can be used in-
stead, even though its convergence speed might be impacted.

2.6 Bibliographic Remarks

There is a large body of literature on the field of robot localization
and mapping. A general overview of the area of SLAM can be found
in [19, 59, 6, 187, 186]. Initial work on probabilistic SLAM was based
on the extended Kalman filter (EKF) and is due to Smith et al. [176],
building on earlier work [174, 175, 58]. In Section 4 we will treat the
EKF more thoroughly, but in essence it recursively estimates a Gaus-
sian density over the current pose of the robot and the position of all
landmarks. However, as we will see, the computational complexity of
the EKF becomes intractable fairly quickly. Many attempts were made
to extending the filtering approach to cope with larger-scale environ-
ments [26, 52, 130, 91, 184, 188, 92|, but filtering itself was shown to
be inconsistent [105] when applied to the inherently nonlinear SLAM
problem. This is mainly due to linearization choices that cannot be un-
done in a filtering framework. Later work [91, 120] focuses on reducing
the effect of nonlinearities and providing more efficient, but typically
approximate solutions to deal with larger environments.

A smoothing approach to SLAM involves not just the most current
robot location, but the entire robot trajectory up to the current time.
A number of authors consider the problem of smoothing the robot tra-
jectory only [27, 141, 142, 94, 122, 61], which is particularly suited to
sensors such as laser-range finders that easily yield pairwise constraints
between nearby robot poses. More generally, one can consider the full
SLAM problem [187], i.e., the problem of optimally estimating the en-
tire set of sensor poses along with the parameters of all features in the
environment. In fact, this problem has a long history in surveying [85],
photogrammetry [18, 87, 173, 31], where it is known as “bundle adjust-
ment”, and computer vision [64, 181, 182, 191, 95|, where it is referred
to as “structure from motion”. These then led to a flurry of work be-
tween 2000 and 2005 where these ideas were applied in the context of
SLAM [56, 71, 70, 187].
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Square root SAM was introduced in [46, 48] as a fundamentally
better approach to the problem of SLAM than the EKF, based on the
realization that,

e in contrast to the filtering-based covariance or information ma-
trices, which both become fully dense over time [160, 188], the in-
formation matrix associated with smoothing is and stays sparse;

e in typical mapping scenarios (i.e., not repeatedly traversing a
small environment) this matrix is a much more compact repre-
sentation of the map covariance structure;

e the information matrix or measurement Jacobian can be factor-
ized efficiently using sparse Cholesky or QR factorization, respec-
tively, yielding a square root information matrix that can be used
to immediately obtain the optimal robot trajectory and map.

Factoring the information matrix is known in the sequential estima-
tion literature as square root information filtering (SRIF), and was
developed in 1969 for use in JPL’s Mariner 10 missions to Venus (as
recounted by Bierman [14]). The use of square roots results in more
accurate and stable algorithms, and, quoting Maybeck [145] “a number
of practitioners have argued, with considerable logic, that square root
filters should always be adopted in preference to the standard Kalman
filter recursion”. Maybeck briefly discusses the SRIF in a chapter on
square root filtering, and it and other square root type algorithms are
the subject of a book by Bierman [14].

Suitable nonlinear solvers are needed to apply the smoothing ap-
proach to measurement functions. A general in depth treatment of non-
linear solvers is provided by [155], while [84] focuses on the linear alge-
bra perspective. The most basic nonlinear solver applicable to smooth-
ing is the well-known Gauss-Newton algorithm. A more advanced and
frequently used algorithm is Levenberg-Marquardt [133, 144]—this is
also the algorithm used for square root SAM. Powell’s dog leg [167, 140]
can provide improved efficiency, and, as we will later see, is essential
when incrementally updating matrix factorizations.
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Exploiting Sparsity

As we saw in the previous section, performing MAP inference in nonlin-
ear SLAM requires repeatedly solving large (but sparse) linear systems.
While there exist efficient software libraries to solve these, these are but
instantiations of a much more general algorithm. Sparse linear algebra
is just the special case for linear-Gaussian factors, i.e., where all priors
and measurements are assumed Gaussian, and only linear measure-
ment functions are involved. The sparse structure of the factor graph
is the key to understanding this more general algorithm, and hence also
understanding (and improving) sparse factorization methods.

3.1 On Sparsity

3.1.1 Motivating Example

Dense methods will not scale to realistic problem sizes in SLAM. In the
introduction we looked at a small toy problem to explain Bayes nets and
factor graph formulations, for which a dense method will work fine. The
larger simulation example, with its factor graph shown in Figure 2.1 on
page 18, is more representative of real-world problems. However, it is
still relatively small as real SLAM problems go, where problems with

30
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thousands or even millions of unknowns are not unheard of. Yet, we
are able to handle these without a problem because of sparsity.

The sparsity can be appreciated directly from looking at the factor
graph. It is clear from Figure 2.1 that the graph is sparse, i.e., it is
by no means a fully connected graph. The odometry chain linking the
100 unknown poses is a linear structure of 100 binary factors, instead
of the possible 100% (binary) factors. In addition, with 20 landmarks
we could have up to 2000 likelihood factors linking each landmark to
each pose: the true number is closer to 400. And finally, there are no
factors between landmarks at all. This reflects that we have not been
given any information about their relative position. This structure is
typical of most SLAM problems.

Below we will try to fully understand the sparse structure of these
problems. We use the toy problem from the introduction as an illustra-
tion throughout. Then, at the end of this section we show how these
concepts translate to the larger example, and to real-world problems.

3.1.2 The Sparse Jacobian and its Factor Graph

The key to modern SLAM algorithms is exploiting sparsity, and an
important property of factor graphs in SLAM is that they represent
the sparse block structure in the resulting sparse Jacobian matrix A.
To see this, let us revisit the least-squares problem that is the key
computation in the inner loop of the nonlinear SLAM problem:

A* = argminy_ |44 — b3 . (3.1)
A i

Each term above is derived from a factor in the original, nonlin-
ear SLAM problem, linearized around the current linearization point
(Equation 2.8). The matrices A; can be broken up in blocks correspond-
ing to each variable, and collected in a large, block-sparse Jacobian
whose sparsity structure is given exactly by the factor graph.

Even though these linear problems typically arise as inner iterations
in nonlinear optimization, we drop the A notation below, as everything
holds for general linear problems regardless of their origin.

Example. Consider the factor graph for the small toy example,
shown again for convenience in Figure 3.1. After linearization, we ob-
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Figure 3.1: Factor graph (again) for the toy SLAM example.
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Figure 3.2: Block structure of the sparse Jacobian A for the toy SLAM example
with A = (817,613, 621,62, 623 ) .

tain a sparse system [A|b] with the block structure in Figure 3.2. Com-
paring this with the factor graph, it is obvious that every factor cor-
responds to a block row, and every variable corresponds to a block
column of A. In total there are nine block-rows, one for every factor in
the factorization of ¢(l1, 12, x1, x2, x3).

3.1.3 The Sparse Information Matrix and its Graph

When using Cholesky factorization for solving the normal equations,
as explained in Section 2.4, we first form the Hessian or information
matrix A = A" A. In general, since the Jacobian A is block-sparse, the
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Figure 3.3: The Hessian matrix A 2 AT A for the toy SLAM problem.
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Figure 3.4: The Hessian matrix A can be interpreted as the matrix associated with
the Markov random field representation for the problem.

Hessian A is expected to be sparse as well. By construction, the Hessian
is a symmetric matrix, and if a unique MAP solution to the problem
exists, it is also positive definite.

The information matrix A can be associated with yet another, undi-
rected graphical model for the SLAM problem, namely a Markov ran-
dom field or MRF. In contrast to a factor graph, an MRF is a graphical
model that involves only the variables, just like a Bayes net. But unlike
a Bayes net, the graph G of an MRF is an undirected graph: the edges
only indicate that there is some interaction between the variables in-
volved. At the block-level, the sparsity pattern of A = AT A is exactly
the adjacency matrix of G.

Example. Figure 3.3 shows the information matrix A associated
with our running toy example. In this case there are five variables
that partition the Hessian as shown. The zero blocks indicate which
variables do not interact, e.g., [1 and lo have no direct interaction.
Figure 3.4 shows the corresponding MRF.

In what follows we will frequently refer to the undirected graph G
of the MRF associated with an inference problem. However, we will not
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use the MRF graphical model much beyond that. Note that one can
develop an equivalent theory of how MRFs represent a different family
of factored probability densities, see e.g. Koller and Friedman [121]. In
the linear-Gaussian case, for instance, the least-squares error can be
re-written as

JAA —b)5 = ATATAA —2ATATH+bTh (3.2)
= bb—-2> g/ A+ D> ATAGA;,  (33)
J ]

where ¢ 2 ATh. After exponentiating, we see that the induced Gaussian
density has the form

p(A) ocexp (= [ AA —bll3) oc [T oA TTws(Ai2y), (3.4)

which is the general form for densities induced by binary MRFs [204].

In what follows, however, factor graphs are better suited to our
needs. They are able to express a finer-grained factorization, and are
more closely related to the original problem formulation. For example,
if there exist ternary (or higher arity) factors in the factor graph, the
graph G of the equivalent MRF connects those nodes in an undirected
clique (a fully connected subgraph), but the origin of the corresponding
clique potential is lost. In linear algebra, this reflects the fact that many
matrices A can yield the same A = AT A matrix: important information
on the sparsity is lost.

3.2 The Elimination Algorithm

There exists a general algorithm that, given any (preferably sparse)
factor graph, can compute the corresponding posterior density p(X|Z)
on the unknown variables X in a form that allows easy recovery of the
MAP solution to the problem. As we saw, a factor graph represents
the unnormalized posterior ¢(X) o P(X|Z) as a product of factors,
and in SLAM problems this graph is typically generated directly from
the measurements. The elimination algorithm is a recipe for converting
a factor graph back to a Bayes net, but now only on the unknown
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Algorithm 3.1 The Variable Elimination Algorithm

1: function ELIMINATE(®;.,) > given a factor graph on n variables

2: for j=1..ndo > for all variables
3: p(x|S;), ®js1:m < EliminateOne(®j.,, ;) > eliminate z;
4: return p(z1]S1)p(x2|S2) ... p(zn) > return Bayes net

Algorithm 3.2 Eliminate variable x; from a factor graph ®;.,.

1: function ELIMINATEONE(®;.p,, ;) > given reduced graph ®;.,
2 Remove all factors ¢;(X;) that are adjacent to z;

3: S(z;) <+ all variables involved excluding z; > the separator
4: P(xj,85) « I1; i (Xs) > create the product factor ¢
5 p(x]155)7(S;5) < ¥(xj,5;) > factorize the product
6 Add the new factor 7(S;) back into the graph

7 return p(z;|5;), ®jt1:n > Conditional and reduced graph

variables X. This then allows for easy MAP inference, and even other
operations such as sampling (as we saw before) and/or marginalization.

In particular, the variable elimination algorithm is a way to fac-
torize any factor graph of the form

O(X) =d(x1,...,20) (3.5)
into a factored Bayes net probability density of the form
p(X) = p(a1|S1)p(a2]S2) ... p(xs) = [ p(a;15)), (3.6)
J

where S; denotes an assignment to the separator S(x;) associated
with variable x; under the chosen variable ordering x1,...,2,. The
separator is defined as the set of variables on which z; is conditioned,
after elimination. While this factorization is akin to the chain rule,
eliminating a sparse factor graph will typically lead to small separators.

The elimination algorithm is listed as Algorithm 3.1, where we used
the shorthand notation ®;., 2 é(xj,...,y) to denote a partially elimi-
nated factor graph. The algorithm proceeds by eliminating one variable
x;j at a time, starting with the complete factor graph ®1.,,. As we elim-
inate each variable z;, the function ELIMINATEONE produces a single
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(d)

Figure 3.5: Variable elimination for the toy SLAM example, transforming the
factor graph from Figure 3.1 into a Bayes net, using the ordering I, l2, ©1, T2, T3.

conditional p(z;|S;), as well as a reduced factor graph ®;;1., on the
remaining variables. After all variables have been eliminated, the algo-
rithm returns the resulting Bayes net with the desired factorization.
The pseudo-code for eliminating a single variable z; is listed as
Algorithm 3.2. Given a partially eliminated factor graph ®;.,, we first
remove all factors ¢;(x;) that are adjacent to x; and multiply them
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into the product factor ¢ (x;,S;). We then factorize ¢ (x;,S;) into a
conditional distribution p(x;|S;) on the eliminated variable z;, and a
new factor 7(S;) on the separator S(x;):

1/)(.%'j,5j) :p(l‘j‘Sj)T(Sj). (37)

Hence, the entire factorization from ¢(X) to p(X) is seen to be a succes-
ston of n local factorization steps. When eliminating the last variable
xy, the separator S(z,) will be empty, and the conditional produced
will simply be a prior p(z,,) on z,.

Example. One possible elimination sequence for the toy example
is shown in Figure 3.5, for the ordering [y, lo, x1, x2, x3. In each step,
the variable being eliminated is shaded gray, and the new factor 7(5;)
on the separator S; is shown in red. Taken as a whole, the variable
elimination algorithm factorizes the factor graph ¢(ly, l2, 21, x2, x3) into
the Bayes net in Figure 3.5, corresponding to the factorization

p(li,le, z1,22,23) = p(li|z1, z2)p(la|xs)

p(x1|z2)p(@2|2s)p(23). (3.8)

3.3 Sparse Matrix Factorization as Variable Elimination

In the case of linear measurement functions and additive normally dis-
tributed noise, the elimination algorithm is equivalent to sparse matriz
factorization. Both sparse Cholesky and QR factorization are a special
case of the general algorithm.

3.3.1 Sparse Gaussian Factors

Let us consider the elimination of a single variable x;, as outlined in
Algorithm 3.2 on page 35. In the least-squares problem (3.1), all factors
are of the form

1
6:0%) = exp { =3 14:X; - b3} (3.9

where X; are all the variables involved in factor ¢;, with A; composed
of smaller sub-blocks corresponding to each variable.
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Example. The linearized factor ¢7 between l; and z1 in the toy
SLAM example is equal to

1
<Z>7(l1,a:1) = exp {—2 HA71 l1+ A7z 21 — b7”§} , (310)
which corresponds to
A
A7 = [An1|Azs] (3.11)
X7 2 [l 2], (3.12)

where we use the semicolon to indicate concatenation of column vectors.

3.3.2 Forming the Product Factor

As explained before, the elimination algorithm proceeds one variable
at a time. Following Algorithm 3.2, for every variable x; we remove all
factors ¢;(X;) adjacent to z;, and form the intermediate product factor
Y (z;,5;). This can be done by accumulating all the matrices A; into a
new, larger block-matrix flj, as we can write

(x4, 8;) < H¢i(Xz') (3.13)
- exp{—;ZHAiXi—bng} (3.14)
= eXp{—; Hlej[ﬂ?j;sj] - Bsz}, (3.15)

where the new RHS vector Bj stacks all b;.

Example. Consider eliminating the variable /1 in the toy example.
The adjacent factors are ¢4, ¢7 and ¢g, in turn inducing the separator
S1 = [x1; x2]. The product factor is then equal to

10 - 2
¥ (I, 1, 2) = exp {—2 HAl[ll;fL‘l;SEQ] — b1H2} , (3.16)
with
. A . by
A= | A Az , b= by |. (3.17)

Asgi Agy bs
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Looking at the sparse Jacobian in Figure 3.2 on page 32, this simply
boils down to taking out the block rows with non-zero blocks in the
first column, corresponding to the three factors adjacent to ;.

3.3.3 Eliminating a Variable using Partial QR

Factorizing the product ¢(z;, S;) can be done in several different ways.
We first discuss the QR variant, as it more directly connects to the
linearized factors. In particular, the augmented matrix [A;|b;] corre-
sponding to the product factor ¢(z;, Sj) can be rewritten using partial
QR-factorization [84] as follows:

(3.18)

Ailh) = Q [ A ] ,

A b,

where R; is an upper-triangular matrix. This allows us to factor
P(xj,5;) as follows:

¥(zj,55) = exp{—; Hﬁj[xj;sj] —(_?jHQ} (3.19)

2
1 9 1+ ~ 12
- exp{—Qnyjxj+ersj—dj\\2}exp{—2HATSj—bT 2}
= p(x;]5;)7(S;), (3.20)

where we used the fact that the rotation matrix @) does not alter the
value of the norms involved.

Example. In Figure 3.6 we show the result of eliminating the first
variable in the example, the landmark [y with separator {z1,z2}. We
show the operation on the factor graph and the corresponding effect on
the sparse Jacobian from Figure 3.2, omitting the RHS. The partition
above the line corresponds to a sparse, upper-triangular matrix R that
is being formed. New contributions to the matrix are shown in boldface:
blue for the contributions to R, and red for newly created factors.

3.3.4 Multifrontal QR Factorization

The entire elimination algorithm, using partial QR to eliminate a single
variable, is equivalent to sparse QR factorization. As the treatment
above considers multi-dimensional variables x; € R", this is in fact an
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Figure 3.6: Eliminating the variable l; as a partial sparse factorization step.

instance of multi-frontal QR factorization [57], as we eliminate several
scalar variables at a time, which is beneficial for processor utilization.
While in our case the scalar variables are grouped because of their
semantic meaning in the inference problem, sparse linear algebra codes
typically analyze the problem to group for maximum computational
efficiency. In many cases these two strategies are closely aligned.

Example. For completeness, we show the four remaining variable
elimination steps in Figure 3.7, showing an end-to-end example of how
multifrontal QR factorization proceeds on a small example. The final
step shows the equivalence between the resulting Bayes net and the
sparse upper-triangular factor R.
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Figure 3.7: The remaining elimination steps for the toy example, completing a full
multifrontal QR factorization.
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3.4 The Sparse Cholesky Factor as a Bayes Net

The equivalence between variable elimination and sparse matrix fac-
torization reveals that the graphical model associated with an upper
triangular matrix is a Bayes net! Just like a factor graph is the graphical
embodiment of a sparse Jacobian, and an MRF can be associated with
the Hessian, a Bayes net reveals the sparsity structure of a Cholesky
factor. In hindsight, this perhaps is not too surprising: a Bayes net
is a directed acyclic graph (DAG), and that is exactly the “upper-
triangular” property for matrices.

What’s more, the Cholesky factor corresponds to a Gaussian
Bayes net, which we defined as one made up of linear-Gaussian condi-
tionals. The variable elimination algorithm holds for general densities,
but in case the factor graph only contains linear measurement func-
tions and Gaussian additive noise, the resulting Bayes net has a very
specific form. We discuss the details below, as well as how to solve for
the MAP estimate in the linear case.

3.4.1 Linear-Gaussian Conditionals

As we discussed in Section 3.2 on page 34 on the elimination algorithm
in general, the Gaussian factor graph corresponding to the linearized
nonlinear problem is transformed by elimination into the density P(X)
given by the now familiar Bayes net factorization:

P(X) = [T pls15)). (321)

In both QR and Cholesky variants, the conditional densities p(z;|S;)
are given by

1
p(z;]S;) = kexp {—2 |Rjz; + 1555 — deg} : (3.22)

which is a linear-Gaussian density on the eliminated variable ;. Indeed,
we have

T A
IRz +T5S; — djlls = (wj — )" R Ry (w5 — ) = ||y — 13,
(3.23)
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where the mean p; = R;l(dj —T35;) depends linearly on the separator
S;, and the covariance matrix is given by ¥; = (RJTR]-)_I. Hence, the

normalization constant k = ]27TE]~]_1/ %,

3.4.2 Solving a Bayes Net is Back-substitution

After the elimination step is complete, back-substitution is used to
obtain the MAP estimate of each variable. As seen in Figure 3.7, the
last variable eliminated does not depend on any other variables. Thus,
the MAP estimate of the last variable can be directly extracted from
the Bayes net. By proceeding in reverse elimination order, the values of
all the separator variables for each conditional will always be available
from the previous steps, allowing the estimate for the current frontal
variable to be computed.

Algorithm 3.3 Back-substitution in Bayes Net

1: function SOLVE(p(X)) > given Gaussian Bayes net on n variables
2: for j =n..1do > reverse elimination order

3: T} Rj_l(dj —T5S57) > solve for 7 given separator ST

The solving procedure is summarized in Algorithm 3.3. At every
step, the MAP estimate for the variable z; is the conditional mean,

:E;k = R;l(dj - TJS;), (3.24)

since by construction the MAP estimate for the separator S} is fully
known by this point.

3.5 Discussion

Above we show how the elimination algorithm can be used to efficiently
solve the linear systems created as part of MAP inference in SLAM,
and this generalizes to other applications. In particular, we show that
using partial QR factorization, when eliminating a single variable, leads
to a well-known sparse matrix factorization method. One could then
rightfully ask why all this matters, since efficient codes exist to solve
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sparse linear systems. The reason we think it matters is because it
provides insight, and because the elimination approach is more general
than just linear algebra.

The interpretation in terms of probabilistic graphical models is not
something that is appreciated by the sparse linear algebra community.
There, researchers are concerned with linear systems regardless of their
provenance. They could derive from applications as diverse as fluid dy-
namics, airplane design, or weather forecasting, and hence the software
packages have to treat them in a generic way. However, in robotics,
and indeed other continuous estimation problems, it is advantageous
to reason in terms of Bayesian probabilities and MAP inference. The
explanation above makes this connection explicit, and highlights how
sparse linear algebra can be used as the computational engine.

In a very real sense, sparse linear algebra factorization methods
are just a special case of a much more general algorithm, and this
opens the door to algorithmic innovation and/or judicious, informed
approximations. When stating the algorithm, we did not specify that
the densities involved needed to be Gaussian, or even that the variables
need to be continuous. The very same algorithm can perform MAP
inference and/or marginalization in discrete problems, or even mixed
discrete-continuous problems.

In the next sections, we will deepen this connection and describe
both old and new algorithms in this new light.

3.6 Bibliographic Remarks

The variable elimination algorithm originated in order to solve systems
of linear equations. It was first applied in modern times by Gauss in
the early 1800s [75, see article 180 on page 262 of the English transla-
tion]. He was interested in solving least-squares problems related to as-
tronomy, in particular, computing the orbit of the “planets” Ceres and
Pallas [75, 76]. The method he discovered is now known as Cholesky fac-
torization, an elimination variant for least-squares problems. However,
the algorithm which we now commonly refer to as Gaussian elimination
was already known to the Chinese in the 2"? century B.C.
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A graphical view of the elimination process first appeared in the
analysis of large systems of sparse linear equations. Modern linear al-
gebra originated after WWII with the advent of digital computers, and
matrix factorization methods revolutionized matrix computations (see
Stewart [178] and the references therein). Parter [159] seems to have
been the first to analyze sparse matrices using graphs and study differ-
ent triangulations of a graph. He describes Cholesky factorization on
this graph by repeatedly choosing a vertex v, adding edges to make the
neighborhood of v into a clique, and then removing v from the graph.

Whereas sparse symmetric matrices are represented by undirected
graphs, non-symmetric matrices and their factorizations (most notably
QR factorization) can be analyzed by means of bipartite graphs [79, 81].
In bipartite graphs, elimination is done via a bipartite elimination game,
as described by Heggernes and Matstoms [97]. These graphs, of course,
are the symbolic equivalent of the factor graphs we discuss in this
article.

The view of elimination as an algorithm that operates on a graph
allows one to generalize away from linear equations. Carré [25] shows
that all operations can be specified in terms of a semiring (S, ®, ®),
and that quite a few shortest path and network flow methods can be
seen as variations of known matrix computations, e.g. the Jacobi and
Gauss-Seidel methods, Jordan elimination, etc.

In fact, the elimination algorithm has popped up in a surprising
variety of fields, making it one of the most important algorithms in
science and engineering. In the early 70s Bertele and Brioschi [10, 11,
12] started using vertex elimination to solve combinatorial optimization
problems via dynamic programming [9]. In relation database theory,
similar methods are used to improve the efficiency of query processing,
see Beeri et al. [8], Fagin et al. [62], Goodman and Shmueli [86].

In parallel, many interesting developments happened in the
constraint-satisfaction literature. In particular, Montanari [148] and
[73] pointed out that a constraint-satisfaction problems (CSP) involv-
ing only binary constraints could be represented by a graph. The con-
nection with linear algebra was made by Seidel [172], who derived an
elimination procedure for binary constraint networks which he called
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the “invasion procedure”. The same algorithm was later rediscovered
by Dechter and Pearl [45] under the name “adaptive consistency”.

In the AI community the development of expert systems spurred the
development of probabilistic reasoning systems, and, in a landmark pa-
per, Pearl [162] developed belief propagation in trees. The tractability
of probabilistic inference in trees was earlier noted by Kelly and Barclay
[115] and also by Cannings et al. [20]. The latter paper also developed
the peeling algorithm, which is essentially variable elimination on an ar-
bitrary graph. Pure elimination algorithms for belief nets, i.e., without
a belief propagation metaphor, were developed by D’Ambrosio [37] and
Zhang and Poole [207], and unified with similar algorithms in the CSP
literature under the name bucket elimination by Dechter [42, 43, 44].

Tanner [183] introduced the use of bipartite graphs to describe low-
density parity-check codes, which were subsequently named Tanner
graphs in the literature. Later, Wiberg et al. [199, 198] rediscovered
Tanner’s work and extended it to include (hidden) state variables [66].
Frey et al. then later built upon the work by Wiberg [198] and intro-
duced factor graphs [74, 125, 124], a generalization of Tanner graphs
where the “factors” can now be arbitrary functions. Kschischang et al.
[125] show how the sum-product algorithm on factor graphs can be
applied to a wide variety of other settings, including behavioral model-
ing, linear codes, trellises and state-space models, Markov chains, and
hidden Markov models; the latter yielding both the Viterbi algorithm
and the Kalman filter as special cases.

In robotics, it was noted by Thrun et al. [188] and others that the
information matrix A is the matrix of a Markov random field associ-
ated with the SLAM problem. The objective function in SLAM corre-
sponds to a pairwise Markov random field (MRF) [201, 204] through
the Hammersley-Clifford theorem [201], which associates cliques in
the MRF with potentials. Many more connections between factor
graphs, MRFs and inference problems in robotics were made by us
in [49, 46, 123, 48] and expanded upon here.
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Elimination Ordering

Insight into the graphs underlying robotics inference, and how their
sparsity is affected by the implementation choices we make, is crucial
for achieving highly performant algorithms. In this section we discuss
elimination ordering strategies and their effect on performance. This
will also allows us, in Section 5, to understand the effects of marginal-
izing out variables, and its possibly deleterious effect on sparsity, espe-
cially in the SLAM case. Other inference problems in robotics benefit
from only keeping track of the most recent state estimate; this leads to
filtering and/or fixed-lag smoothing algorithms.

4.1 Complexity of Elimination

Let us examine the computational complexity of the elimination algo-
rithm 3.1 on page 35. Since we eliminate n variables, the cost is

F(@1) = 3 (@), (4.1
j=1

where g(®;.,,z;) is the cost of eliminating variable x; from the re-
maining graph ®;.,. Elimination is a general algorithm to transform
a factor graph into a Bayes net that encodes the posterior, and hence

47
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this cost heavily depends on the application. However, for the case of
sparse matrix factorization, the cost of Algorithm 3.2 is dominated by
the partial QR factorization step (Section 3.3.3). The main cost in QR
is incurred by the Householder reflections, which—without going into
detail—take 4myn; flops when applied to an my X ng matrix. We need
one Householder reflection for every dimension k in z;, hence

nj T'Lj
9(Pjin, ) = > Amyny = > A(mj —k)(nj +s;+1—k), (4.2)
k=1 k=1

with n; the dimension of the variable x; to be eliminated, s; the size of
the separator S;, and m; the number of rows in the augmented matrix
[A;]b;] of the product factor ¥(z;, S;).

The rather involved calculation above simplifies for a dense, scalar
m x n matrix to the well-known complexity of dense QR [84]:

n—1

f(@1.) = Z 4(m —k)(n+1—k) =2(m —n/3)n? + O(mn). (4.3)
k=1

However, for the sparse, multifrontal algorithm the flop count will be
much lower than this number. In addition, the multifrontal method
can make use of Level-3 BLAS methods that exploit cache coherence
or even thread parallelism for larger elimination steps [39].

Example. For our running SLAM example, for which the multi-
frontal QR algorithm is shown in Figures 3.6 and 3.7, we have

f(P1:5) = 32+ 20 + 488 + 488 + 128 = 1156 flops (4.4)

for the elimination order o = {l1,lo, z1, 22, z3}, and where we assumed
my, = my, = 2 (as with, for example, bearing-range measurements).
Using the same elimination order for a dense matrix would have yielded

F(®1.5) = 1752 4 1304 + 1256 + 608 + 152 = 5072 flops.  (4.5)

The dramatic improvement in each elimination step is because of the
smaller number of rows m; and columns n; + s; 4 1 involved.
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Figure 4.1: Bayes net resulting from using the ordering z3, x2, x1, l2, 1 for the
robotics example (the reverse ordering from Figure 3.5 on page 36).

4.2 Variable Ordering Matters

The flop count for sparse factorization will be much lower than for a
dense matrix, but can vary dramatically for different elimination or-
derings. While any order will ultimately produce an identical MAP
estimate, the order in which variables are eliminated matters, as differ-
ent orderings lead to Bayes nets with different topologies. This will in
turn affect the computational complexity of the elimination algorithm,
as the sizes s; of the separators at each step are affected. To illustrate,
let us look at two examples below.

Example 1. In our toy example, the result of using the reverse
ordering from before is shown in Figure 4.1. Note that the resulting
Bayes net is almost fully dense: only the first variable eliminated, x3,
is not fully connected to the variables later in the ordering. This figure
should be compared with the final elimination stage of Figure 3.7 on
page 41.

Example 2. A more realistic example shows what is really at stake.
To this end, recall the larger simulation example, with its factor graph
shown in Figure 2.1 on page 18. The sparsity patterns for the corre-
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Figure 4.2: On the left, the measurement Jacobian A associated with the problem
in Figure 2.1, which has 3 x 95 4+ 2 x 24 = 333 unknowns. The number of rows,
1126, is equal to the number of (scalar) measurements. Also given is the number
of non-zero entries “nnz”. On the right: (top) the information matrix A £ AT A;
(middle) its upper triangular Cholesky triangle R; (bottom) an alternative factor
amdR obtained with a better variable ordering (COLAMD).
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sponding sparse Jacobian matrix A is shown in Figure 4.2. Also shown
is the pattern for the information matrix A £ AT A, in the top-right
corner.

On the right of Figure 4.2, we show the resulting upper triangu-
lar Choleksy factor R for two different orderings. Both of them are
sparse, and both of them satisfy RT R = AT A (up to a permutation of
the variables), but they differ in the amount of sparsity they exhibit.
It is exactly this that will determine how expensive it is to factorize
A. The first version of the ordering comes naturally: it eliminates the
poses first, and then the landmarks, leading to a sparse R factor with
9399 non-zeros. In contrast, the sparse factor R in the bottom-right
was obtained by reordering the variables according to the COLAMD
heuristic (Section 4.4.1 below) and only has 4168 non-zeros. Yet back-
substitution gives exactly the same solution for both versions.

4.3 The Concept of Fill-in

Different elimination orderings influence complexity by giving rise to
different separator sizes throughout the elimination process. Larger sep-
arator sizes are the result of fill-in, the creation of dependencies in the
sparse graphs between variables that were previously independent of
each other. Hence, it is natural that we would want to both character-
ize this phenomenon and find ways to minimize it.

Formally, we define fill-in by referring to the structure of the undi-
rected Markov random field GG associated with the information matrix
A (see Section 3.1.3), and the directed Bayes net associated with the
Cholesky factor R. In general, the structure of R above the diagonal is
identical to that of A = AT A = RT R, except for fill-in with non-zeros
in some (or all) places. In graphical terms, these are represented by
directed edges that were not present as undirected edges in G.

Example. Figure 4.3 shows how an unfavorable elimination order
yields three extra edges in the resulting Bayes net on the right, high-
lighted in red, that were not present in G on the left. Also shown are
the information matrix A and the Cholesky factor R, with the fill-in
blocks colored red, as well. Note that the sparsity of the information
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Figure 4.3: Fill-in occurs when the DAG resulting from elimination into R has
extra edges with respect to the Markov random field G corresponding to A.

matrix A is not affected by re-ordering the columns and rows (compare
with Figure 3.3 on page 33). In contrast, the matrix R has three extra
non-zero blocks as compared to the last step in Figure 3.7 on page 41.

4.4 Ordering Heuristics

An elimination ordering with minimum fill-in minimizes the cost of the
elimination/factorization algorithm, but finding it is NP-hard. Fortu-
nately, many useful heuristics have been developed to approximate an
optimal ordering.

4.4.1 Minimum Degree Orderings

The two most widely used sparse matrix ordering algorithms for sci-
entific computation on standard desktop machines are based on the
heuristic of first eliminating the least constrained variables of G. This
family of algorithms is known as the minimum degree algorithms.
A first approach is to eliminate all variables of minimal degree in
one call of the elimination function, known as multiple elimination or
minimum degree MMD. In addition indistinguishable nodes are elim-
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inated, whose elimination will not introduce additional dependencies
as they are subsumed by another elimination performed in the same
step. MMD saves time both on updating the graph and determining
the next elimination candidates.

The second approach avoids computing the exact vertex degrees
when eliminating one or more variables, by collecting nodes into cliques.
Only the degrees for the cliques are calculated; an approximate bound
on the degree of the remaining vertices can be kept up to date relatively
cheaply. This algorithm is known as the Approximate Minimum
Degree or AMD method.

4.4.2 Nested Dissection Orderings

A fundamentally different approach to reordering is to apply a divide-
and-conquer paradigm. This is feasible as eliminating a node only in-
duces new constraints for a set of (spatially) direct neighbors. Nested
dissection (ND) algorithms try to exploit this by recursively parti-
tioning the graph and returning a post-fix notation of the partitioning
tree as the ordering.

In nested dissection algorithms the size of the separators are of
central importance. To bound the complexity of the factorization when
using an ND ordering, the f(n)-separator theorem is key, which is a
statement about a class of graphs S:

Theorem 1. (f(n)-SEPARATOR THEOREM ) There exist constants o <
1 and B > 0 such that if G is any n-vertex graph in .5, the vertices of G
can be partitioned into three sets A, B, C in a way that no edge joins
a vertex in A with one in B, A nor B contains more than an vertices,
and C' contains no more than Sf(n) vertices.

For all classes of graphs S for which a f(n)-theorem holds, an ef-
ficient divide-and-conquer ordering can be found [136]. Note that one
needs to guarantee that the algorithms for the graph partitioning and
local subgraph elimination are less complex than the factorization. The
two most important results are:

o For chain-like graphs we can recursively find constant separators,
and the resulting factorization will cost O(n) flops, i.e., is linear
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in the number of variables. In linear algebra, this corresponds to
the well-known fact that inverting/factorizing a band-diagonal
matrix is linear.

e For planar graphs we can recursively find separators of size less
than 21/2n, and the resulting factorization will cost O(n'-%) flops.

The latter result immediately leads to the basic nested dissection
method—as developed for planar graphs. It is given below in Algo-
rithm 4.1.

Algorithm 4.1 Nested Dissection for Planar Graphs

Let G = (V, E) be a graph with n vertices V' and a set of edges E.

1. Partition G into subgraphs A, B and C, with |A|,|B| < %n and
IC| <2v2yn

2. Repeat Step (1) until |A|,|B| <eor |A|,|B|=1

3. Obtain the ordering by putting the binary tree of the recursive

partitioning in post-order, with the nodes of the separating set C
last for every triple of sets.

In practice, a graph partitioning algorithm like METIS [114] is used.
Most algorithms use a two step approach for determining the separators
in the graph. First, they try to find good areas for a cut that preserve
the balance between the induced subgraphs. Second, a refinement algo-
rithm like [116] or [65] is applied. These algorithms can be understood
as variants of bipartite graph matching algorithms as they try to find
the minimal cut between a set of nodes.

4.5 Ordering Heuristics in Robotics

In SLAM, a naive ordering strategy is to eliminate the landmarks first,
and then the poses. This is often called the “Schur-complement trick”,
because when the elimination is written down at the block level the



4.5. Ordering Heuristics in Robotics 55

Figure 4.4: The so-called “Schur complement trick” eliminates all landmarks first,
but this leads to a very connected graph on the robot poses. Doing the reverse (poses
first) would similarly lead to a fully connected clique of landmarks.

corresponding linear algebra operation involves taking the Schur com-
plement of a matrix. Indeed, if we reorder the columns of the Jacobian
A such that landmarks come first, we can split the matrix A into a
block F' corresponding to landmark unknowns, and a block G corre-
sponding to poses (or cameras, in the structure from motion case).
Block elimination then yields

A= [ F G } (4.6)
F'F F'G
TA
— AA_[GTF GTG] (4.7)
F'F F'a
— R= (4.8)

0 GTG-GTF (FTF)*1 Fiag |

where the matrix FTF is block-diagonal, and the lower-right block
in R is known as the Schur complement of FTF. Its inverse is the
covariance matrix on the poses/cameras, which is why it is also known
as the “reduced camera matrix”.
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Figure 4.5: In contrast, an approximate minimum degree ordering (using CO-
LAMD) leads to much less fill-in and considerably faster linear solve steps.

However, “natural” orderings such as the Schur complement trick,
with either landmarks or poses eliminated first, can be quite expensive
as compared to using better heuristics. In structure from motion, with
possibly hundreds of thousands of points, it can be advantageous to use
the Schur complement trick as it is beneficial in terms of cache coher-
ence and locality. But in typical robotics applications even a domain-
independent heuristic such as AMD to eliminate the variables in SLAM
yields substantial computational wins.

Example. Figures 4.4 and 4.5 illustrate this for the simulated
SLAM example from Figure 2.1 on page 18. In Figure 4.4 the land-
marks were eliminated first, leading to a densely connected graph on
the robot poses. Doing the reverse (poses first) would lead to a fully
connected clique of landmarks. In contrast, in Figure 4.5, an approx-
imate minimum degree ordering leads to much less fill-in and consid-
erably faster linear solve steps. Figures 4.6a and 4.6b show the same
again, but now in the form of the matrix sparsity patterns. Note the
dense fill-in on the right, linking the entire trajectory to all landmarks.
Reordering of columns (unknowns) does not affect the sparseness of A,
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(b) Information matrix A after reordering and its Cholesky triangle.

Figure 4.6: Comparing the information matrix and the Cholesky factor for the two
different orderings from Figures 4.4 and 4.5; nz = number of non-zeros.

but the number of non-zeros in R has dropped from approximately 2.8
million to about 250 thousand.

Because finding an optimal ordering is NP-complete, any piece of
domain-specific information can help a great deal. The above domain
agnostic ordering heuristics go a long way towards minimizing fill-in,
and these methods are built into packages such as MATLAB. However,
when solving a sparse inference problem in MATLAB you are doing
so at the scalar level. A very simple domain-specific heuristic is the
semantic information from the true factor graph at the level of poses
and landmarks, not their scalar components. Figure 4.7 shows a further
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Figure 4.7: By reordering while taking into account the special block structure of
the SLAM problem, the non-zero count can be reduced even further, to about 130K,
a reduction by a factor of 20 with respect to the original R.

improvement by a factor of two by simply applying AMD at the block
level vs. the scalar level.

4.6 Nested Dissection and SLAM

The application of nested dissection orderings is especially relevant to
SLAM, as environments mapped by mobile robots often contain parts
that are spatially separated. A divide-and-conquer scheme is one of the
most promising ways to solve challenging SLLAM problems, especially in
large-scale environments. One advantage of submap based approaches
is that the computation can be done in an out-of-core manner, making
it possible to distribute most of the work over multiple computation
resources, increasing the scalability in terms of both time and memory.
Another practical advantage of a divide-and-conquer approach is
that it also leads to a good initialization scheme for batch optimiza-
tion approaches, which is one of the most crucial issues in nonlinear
optimization. By employing a divide-and-conquer approach, we can re-
cursively compute the initializations from the optimized submaps.
Many of these ideas were implemented in the tectonic smoothing
and mapping (TSAM) algorithm [154, 152], which combines nested
dissection and careful initialization. Some partitioning results from that
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T N N

Figure 4.8: A nested dissection ordering leads to a hierarchical decomposition of
a SLAM problem, here illustrated on the Victoria park dataset. The figure shows 4
levels of partitioning, leading to an efficient elimination ordering [152].

work are reproduced in Figure 4.8, which shows a recursive partitioning
of the well-known Victoria park dataset. TSAM2 uses a combination of
the METIS package to find a nested dissection ordering at the global
level and then orders the resulting subgraphs locally using AMD.

If the factor graph arising from a SLAM problem can be embed-
ded in a planar graph, nested dissection leads to a provably optimal
O(n') computation bound, as opposed to the O(n?) complexity that
arises when we repeatedly have to factorize a dense matrix. Figure
4.9 illustrates the partitioning process in a simulated block-world, de-
signed to mimic an indoor or urban scenario with lots of occlusion.
The partitionings from (a) to (f) correspond to the cuts of the first
depth-first partitioning recursion. For these types of environments, a
planar embedding of the graph with O(y/n) separators can be easily
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Figure 4.9: Simulated block world example that has a global planar graph struc-
ture. The table shows the level of the ND recursion, the number of nodes n in the
each partition, \/n, the size of the next partitions and the separator size.

found. To illustrate the \/n separator theorem at work in these types of
environments, the table in Figure 4.9 shows an example of the relevant
partition and separator sizes for a block-world with 25,000 nodes.

4.7 Bibliographic Remarks

Graph-based representations became especially popular in the finite
element community, where the focus was on reducing the “bandwidth”
of the typically very sparse stiffness matrices in order to speed up
computations [169, 36]. Finding an elimination ordering with minimum
fill is NP-hard, as has long been known in the linear algebra [203,
17] and scientific computation communities [114, 97, 93]. The MMD
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ordering heuristic was introduced in [137], and the algorithm known
as COLAMD in [3, 40]. Both AMD and MMD produce equally good
orderings, but AMD is faster, and it has become the de facto standard.

The nested dissection algorithm was introduced by George [78], but
the seminal work on the complexity of the methods was by Lipton and
Tarjan [136, 135], who introduces the f(n)-separator theorem. Improve-
ments focus on finding the separating subgraphs more efficiently, e.g.,
using spectral analysis [166], partially applied MD-orderings as indica-
tors for good partitions [138], and k-way partitioning methods [114].

The importance of sparsity and variable ordering in robotics was
first discussed in [46, 48], and before that in bundle adjustment in [191].
Agarwal and Olson [2] investigated the performance of several ordering
heuristics on a sample of SLAM problems, and found that COLAMD
and METIS [114] are best overall performers. The Schur complement
trick is an often-used technique in computer vision [191, 96].

The divide-and-conquer scheme has been well studied in the SLAM
community. As early as 1976, Brown [18] first employed the submap
scheme in the aero-triangulation and mapping of city-scale areas. A
recursive partitioning is used to exploit the band diagonal structure
of the linear system in the project, and no nonlinearity is considered.
The submap idea for SLAM problems was also investigated in hierar-
chical SLAM by Estrada et al. [60] with a filtering-based local map
building. Also related is the multi-level relaxation by Frese et al. [71].
Ni et al. [154] introduced tectonic smoothing and mapping (TSAM),
which is a two-level submap-based approach based on factor graphs.
Paz et al. [161] improved the work in [60] by fusing the local maps in a
hierarchical way, which has a nested dissection flavor. A similarly hier-
archical approach was taken in HOG-Man [90] and in a generalization
by Grisetti et al. [89].

The application of ND orderings in SLAM was introduced in [123],
where ND is shown to be optimal for SLAM problems that can be
embedded in a planar graph, a feature of many urban datasets. A
fully recursive, ND-based approach to large-scale SLAM problems was
introduced as TSAM2 by Ni and Dellaert [152]. This work was extended
to handle structure from motion problems in [153].
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Incremental Smoothing and Mapping

In previous sections we have discussed efficient batch optimization al-
gorithms under the assumption that all the data is available in advance.
However, many inference problems in robotics are incremental, mean-
ing that measurements arrive as a temporal sequence, and interme-
diate solutions are needed. It is natural to question whether we can
reuse previous computations or if we have to perform a full batch opti-
mization each time. Below we will see that reuse is possible, leading to
efficient incremental algorithms. We first discuss the linear case, where
we can incrementally update a matrix factorization, using well-known
linear algebra techniques. To extend to nonlinear systems we return to
graphical models. Here we describe inference using matrix factorization
as operations on graphical models, introducing the Bayes tree. We then
use the Bayes tree to obtain a fully incremental nonlinear inference al-
gorithm. Finally, marginalization leads to special cases of incremental
inference, namely filtering and fixed-lag smoothing.

62



63

Basement

Figure 5.1: (top left) A map of ten floors of the MIT Stata Center created using a
reduced pose graph [104] in combination with a real-time visual SLAM system. The
data used was collected in 14 sessions spanning a six-month period. The total oper-
ation time was nine hours and the distance traveled was 11km. Elevator transitions
are shown as vertical blue lines. The view is orthographic and the vertical axis has
been exaggerated to make it easier to see each floor. The 2nd floor is approximately
90m across. (top right) Floor plans for each of the floors that were mapped. (bot-
tom) Map for one of the sessions covering the second floor of the MIT Stata Center
with ground truth floor plan added for reference. The dense point cloud consists of
RGB-D frames rendered at the solution of the pose graph. The pose graph itself is
derived from sparse stereo point features.