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Abstract

We review the use of factor graphs for the modeling and solving of
large-scale inference problems in robotics. Factor graphs are a family of
probabilistic graphical models, other examples of which are Bayesian
networks and Markov random fields, well known from the statistical
modeling and machine learning literature. They provide a powerful ab-
straction that gives insight into particular inference problems, making
it easier to think about and design solutions, and write modular soft-
ware to perform the actual inference. We illustrate their use in the
simultaneous localization and mapping problem and other important
problems associated with deploying robots in the real world. We in-
troduce factor graphs as an economical representation within which
to formulate the different inference problems, setting the stage for the
subsequent sections on practical methods to solve them. We explain the
nonlinear optimization techniques for solving arbitrary nonlinear factor
graphs, which requires repeatedly solving large sparse linear systems.

The sparse structure of the factor graph is the key to understand-
ing this more general algorithm, and hence also understanding (and
improving) sparse factorization methods. We provide insight into the
graphs underlying robotics inference, and how their sparsity is affected
by the implementation choices we make, crucial for achieving highly
performant algorithms. As many inference problems in robotics are in-
cremental, we also discuss the iSAM class of algorithms that can reuse
previous computations, re-interpreting incremental matrix factoriza-
tion methods as operations on graphical models, introducing the Bayes
tree in the process. Because in most practical situations we will have
to deal with 3D rotations and other nonlinear manifolds, we also in-
troduce the more sophisticated machinery to perform optimization on
nonlinear manifolds. Finally, we provide an overview of applications of
factor graphs for robot perception, showing the broad impact factor
graphs had in robot perception.

F. Dellaert and M. Kaess. Factor Graphs for Robot Perception. Foundations and
Trends® in Robotics, vol. 6, no. 1-2, pp. 1–139, 2017.
DOI: 10.1561/2300000043.



1
Introduction

This article reviews the use of factor graphs for the modeling and solv-
ing of large-scale inference problems in robotics, including the simulta-
neous localization and mapping (SLAM) problem. Factor graphs are a
family of probabilistic graphical models, other examples of which are
Bayesian networks and Markov random fields, which are well known
from the statistical modeling and machine learning literature. They
provide a powerful abstraction to give insight into particular inference
problems, making it easier to think about and design solutions, and
write modular, flexible software to perform the actual inference. Below
we illustrate their use in SLAM, one of the key problems in mobile
robotics. Other important problems associated with deploying robots
in the real world are localization, tracking, and calibration, all of which
can be phrased in terms of factor graphs, as well.

In this first section we introduce Bayesian networks and factor
graphs in the context of robotics problems. We start with Bayesian
networks as they are probably the most familiar to the reader, and
show how they are useful to model problems in robotics. However,
since sensor data is typically given to us, we introduce factor graphs
as a more relevant and economical representation. We show Bayesian

2
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x1 x2 x3

l1 l2

Figure 1.1: A toy SLAM (simultaneous localization and mapping) example with
three robot poses and two landmarks. Above we schematically indicate the robot
motion with arrows, while the dotted lines indicate bearing measurements.

networks can be effortlessly converted to factor graphs by conditioning
on the sensor data. We then formulate the different inference problems
as optimization problems on factor graphs, setting the stage for the
subsequent sections on practical methods to solve them.

1.1 Inference Problems in Robotics

To act sensibly in the world, robots need to infer knowledge about the
world from their sensors, while drawing on a priori knowledge. There
are many different such inference problems in robotics, but none of
them have received as much attention as simultaneous localization and
mapping (SLAM). We discuss SLAM in detail and use it as a moti-
vating example below. Other inference problems include localization in
a known environment, tracking other actors in the environment, and
multi-robot versions of all of the above. More specialized problems are
also of interest, e.g., calibration or long-term inertial navigation.

In the SLAM problem the goal is to localize a robot using the infor-
mation coming from the robot’s sensors. In a simple case this could be
a set of bearing measurements to a set of landmarks. If the landmarks’
positions are known, this comes down to a triangulation problem remi-
niscent of how ships navigate at sea. However, the additional wrinkle in
SLAM is that we do not know the landmark map a priori, and hence we
have to infer the unknown map simultaneously with localization with
respect to the evolving map.
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Figure 1.1 shows a simple toy example illustrating the structure
of the problem graphically. A robot located at three successive poses
x1, x2, and x3 makes bearing observations on two landmarks l1 and
l2. To anchor the solution in space, let us also assume there is an ab-
solute position/orientation measurement on the first pose x1. Without
this there would be no information about absolute position, as bearing
measurements are all relative.

1.2 Probabilistic Modeling

Because of measurement uncertainty, we cannot hope to recover the
true state of the world, but we can obtain a probabilistic description
of what can be inferred from the measurements. In the Bayesian prob-
ability framework, we use the language of probability theory to assign
a subjective degree of belief to uncertain events. Many excellent texts
are available and listed at the end of this section that treat this subject
in depth, which we do not have space for here.

In robotics we typically need to model a belief over continuous,
multivariate random variables x ∈ Rn. We do this using probability
density functions (PDFs) p(x) over the variables x, satisfying∫

p(x)dx = 1. (1.1)

In terms of notation, we use lowercase letters for random variables, and
uppercase letters to denote sets of them.

In SLAM we want to characterize our knowledge about the un-
knowns X, in this case robot poses and the unknown landmark posi-
tions, when given a set of observed measurements Z. Using the language
of Bayesian probability, this is simply the conditional density

p(X|Z), (1.2)

and obtaining a description like this is called probabilistic inference.
A prerequisite is to first specify a probabilistic model for the variables
of interest and how they give rise to (uncertain) measurements. This is
where probabilistic graphical models enter the picture.

Probabilistic graphical models provide a mechanism to com-
pactly describe complex probability densities by exploiting the struc-
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ture in them [121]. In particular, high-dimensional probability densities
can often be factorized as a product of many factors, each of which is a
probability density over a much smaller domain. This will be explicitly
modeled when we introduce factor graphs, later in this section. How-
ever, below we first introduce a different and perhaps more familiar
graphical model, Bayesian networks, as they provide a gentler intro-
duction into generative modeling.

1.3 Bayesian Networks for Generative Modeling

Bayesian networks are an expedient graphical language for modeling
inference problems in robotics. This is because it is often easy to think
about how measurements are generated by sensors. For example, if
someone tells us the exact location of a landmark and the pose of a
robot, as well as the geometry of its sensor configuration, it is not hard
to predict what the measurement should be. And we can either assume
or learn a noise model for a particular sensor. Measurement predictions
and noise models are the core elements of a generative model, which is
well matched with the Bayesian network framework.

Formally, a Bayesian network [163] or Bayes net is a directed
graphical model where the nodes represent variables θj . We denote the
entire set of random variables of interest as Θ = {θ1 . . . θn}. A Bayes
net then defines a joint probability density p(Θ) over all variables Θ as
the product of conditional densities associated with each of the nodes:

p(Θ) ∆=
∏
j

p(θj |πj). (1.3)

In the equation above p(θj |πj) is the conditional density associated
with node θj , and πj is an assignment of values to the parents of θj .
Hence, in a Bayes net, the factorization of the joint density is dictated
by its graph structure, in particular the node-parent relationships.

As an example, let us consider the Bayes net associated with the
toy SLAM example from Figure 1.1. In this case the random variables
of interest are Θ = {X,Z}, i.e., the unknown poses and landmarks X,
as well as the measurements Z. The corresponding Bayes net for this
toy example is shown in Figure 1.2, with the measurements shown in
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x1 x2 x3

l1 l2

z1

z2 z3 z4

Figure 1.2: Bayes net for the toy SLAM example from Figure 1.1. Above we
showed measurements with square nodes, as these variables are typically observed.

boxes as they are observed. Per the general definition of Bayes nets, the
joint density p(X,Z) = p(x1, x2, x3, l1, l2, z1, z2, z3, z4) is obtained as a
product of conditional densities:

p(X,Z) = p(x1)p(x2|x1)p(x3|x2) (1.4)
× p(l1)p(l2) (1.5)
× p(z1|x1) (1.6)
× p(z2|x1, l1)p(z3|x2, l1)p(z4|x3, l2). (1.7)

One can see that the joint density in this case consists of four qualita-
tively different sets of factors:

• A “Markov chain” p(x1)p(x2|x1)p(x3|x2) on the poses x1, x2, and
x3 [Eq. 1.4]. The conditional densities p(xt+1|xt) might represent
prior knowledge or can be derived from known control inputs.

• “Prior densities” p(l1) and p(l2) on the landmarks l1 and l2 (often
omitted in SLAM settings when there is no prior map) [Eq. 1.5].

• A conditional density p(z1|x1) corresponding to the absolute pose
measurement on the first pose x1 [Eq. 1.6].

• Last but not least, a product of three conditional densities,
p(z2|x1, l1)p(z3|x2, l1)p(z4|x3, l2), corresponding to the three bear-
ing measurements on the landmarks l1 and l2 from the poses x1,
x2, and x3 [Eq. 1.7].
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Note that the graph structure makes an explicit statement about data
association, i.e., for every measurement zk we know which landmark
it is a measurement of. While it is possible to model unknown data
association in a graphical model context, in this text we assume that
data association is given to us as the result of a pre-processing step.

1.4 Specifying Probability Densities

The exact form of the densities above depends very much on the appli-
cation and the sensors used. The most often-used densities involve the
multivariate Gaussian distribution, with probability density

N (θ;µ,Σ) = 1√
|2πΣ|

exp
{
−1

2 ‖θ − µ‖
2
Σ

}
, (1.8)

where µ ∈ Rn is the mean, Σ is an n× n covariance matrix, and

‖θ − µ‖2Σ
∆= (θ − µ)>Σ−1 (θ − µ) (1.9)

denotes the squared Mahalanobis distance. For example, priors on un-
known quantities are often specified using a Gaussian density.

In many cases it is both justified and convenient to model mea-
surements as corrupted by zero-mean Gaussian noise. For example, a
bearing measurement from a given pose x to a given landmark l would
be modeled as

z = h(x, l) + η, (1.10)
where h(.) is a measurement prediction function, and the noise η
is drawn from a zero-mean Gaussian density with measurement covari-
ance R. This yields the following conditional density p(z|x, l) on the
measurement z:

p(z|x, l) = N (z;h(x, l), R) = 1√
|2πR|

exp
{
−1

2 ‖h(x, l)− z‖2R
}
.

(1.11)
The measurement functions h(.) are often nonlinear in practical

robotics applications. Still, while they depend on the actual sensor
used, they are typically not difficult to reason about or write down.
The measurement function for a 2D bearing measurement is simply

h(x, l) = atan2(ly − xy, lx − xx), (1.12)
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where atan2 is the well-known two-argument arctangent variant. Hence,
the final probabilistic measurement model p(z|x, l) is obtained as

p(z|x, l) = 1√
|2πR|

exp
{
−1

2 ‖atan2(ly − xy, lx − xx)− z‖2R
}
. (1.13)

Note that we will not always assume Gaussian measurement noise: to
cope with the occasional data association mistake, for example, many
authors have proposed the use of robust measurement densities, with
heavier tails than a Gaussian density.

Not all probability densities involved are derived from measure-
ments. For example, in the toy SLAM problem we have densities of the
form p(xt+1|xt), specifying a probabilistic motion model which the
robot is assumed to obey. This could be derived from odometry mea-
surements, in which case we would proceed exactly as described above.
Alternatively, such a motion model could arise from known control in-
puts ut. In practice, we often use a conditional Gaussian assumption,

p(xt+1|xt, ut) = 1√
|2πQ|

exp
{
−1

2 ‖g(xt, ut)− xt+1‖2Q
}
, (1.14)

where g(.) is a motion model, and Q a covariance matrix of the appro-
priate dimensionality, e.g., 3× 3 in the case of robots operating in the
plane. Note that for robots operating in three-dimensional space, we
will need slightly more sophisticated machinery to specify densities on
nonlinear manifolds such as SE(3), as discussed in Section 6.

1.5 Simulating from a Bayes Net Model

As an aside, once a probability model is specified as a Bayes net, it
is easy to simulate from it. This is the reason why Bayes nets are the
language of choice for generative modeling, and we mention it here
because it is often beneficial to think about this when building models.

In particular, to simulate from P (Θ) ∆= ∏
j P (θj |πj), one simply

has to topologically sort the nodes in the graph and sample in such a
way that all parent values πj are generated before sampling θj from
the conditional P (θj |πj), which can always be done. This technique is
called ancestral sampling [16].
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As an example, let us again consider the SLAM toy problem. Even
in this tiny problem it is easy to see how the factorization of the joint
density affords us to think locally rather than having to think globally.
Indeed, we can use the Bayes net from Figure 1.2 as a guide to simulate
from the joint density p(x1, x2, x3, l1, l2, z1, z2, z3, z4) by respectively

1. sampling the poses x1, x2, and x3 from p(x1)p(x2|x1)p(x3|x2),
i.e., simulate a robot trajectory;

2. sampling l1 and l2 from p(l1) and p(l2), i.e., generate some plau-
sible landmarks;

3. sampling the measurements from the conditional densities
p(z1|x1), p(z2|x1, l1), p(z3|x2, l1), and p(z4|x3, l2), i.e., simulate
the robot’s sensors.

Many other topological orderings are possible. For example, steps 1 and
2 above can be switched without consequence. Also, we can generate
the pose measurement z1 at any time after x1 is generated, etc.

1.6 Maximum a Posteriori Inference

Now that we have the means to model the world, we can infer knowledge
about the world when given information about it. Above we saw how
to fully specify a joint density P (Θ) in terms of a Bayes net: its factor-
ization is given by its graphical structure, and its exact computational
form by specifying the associated priors and conditional densities.

In robotics we are typically interested in the unknown state vari-
ables X, such as poses and/or landmarks, given the measurements Z.
The most often used estimator for these unknown state variables X
is the maximum a posteriori or MAP estimate, so named because
it maximizes the posterior density p(X|Z) of the states X given the
measurements Z:

XMAP = argmax
X

p(X|Z) (1.15)

= argmax
X

p(Z|X)p(X)
p(Z) . (1.16)
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The second equation above is Bayes’ law, and expresses the posterior
as the product of the measurement density p(Z|X) and the prior p(X)
over the states, appropriately normalized by the factor p(Z).

However, a different expression of Bayes law is the key to under-
standing the true computation underlying MAP inference. Indeed, all
of the quantities in Bayes’ law as stated in (1.16) can in theory be
computed from the Bayes net. However, as the measurements Z are
given, the normalization factor p(Z) is irrelevant to the maximization
and can be dropped. In addition, while the conditional density p(Z|X)
is a properly normalized Gaussian density in Z, we are only concerned
with it as a function in the unknown states X. Hence the second and
more important form of Bayes’ law:

XMAP = argmax
X

l(X;Z)p(X). (1.17)

Here l(X;Z) is the likelihood of the states X given the mea-
surements Z, and is defined as any function proportional to p(Z|X):

l(X;Z) ∝ p(Z|X). (1.18)

The notation l(X;Z) emphasizes the fact that the likelihood is a func-
tion of X and not Z, which acts merely as a parameter in this context.

It is important to realize that conditioning on the measurements
yields likelihood functions that do not look like Gaussian densities, in
general. To see this, consider again the 2D bearing measurement density
in Equation 1.13. When written as a likelihood function we obtain

l(x, l; z) ∝ exp
{
−1

2 ‖atan2(ly − xy, lx − xx)− z‖2R
}
, (1.19)

which is Gaussian in z (after normalization), but decidedly not so in
any other variable. Even in the case of a linear measurement function,
the measurement z is often of lower dimensionality than the unknown
variables it depends on. Hence, conditioning on it results in a degen-
erate Gaussian density on the unknowns, at best; it is only when we
fuse the information from several measurements that the density on
the unknowns becomes a proper probability density. In the case that
not enough measurements are available to fully constrain all variables,
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MAP inference will fail, because a unique maximizer of the posterior
(1.17) is not available.

All of the above motivates the introduction of factor graphs in the
next section. The reasons for introducing a new graphical modeling lan-
guage are (a) the distinct division between states X and measurements
Z, and (b) the fact that we are more interested in the non-Gaussian
likelihood functions, which are not proper probability densities. Hence,
the Bayes net language is rather mismatched with the actual optimiza-
tion problem that we are concerned with. Finally, we will see in Section
3 that the structure of factor graphs is intimately connected with the
computational strategies to solve large-scale inference problems.

1.7 Factor Graphs for Inference

While Bayes nets are a great language for modeling, factor graphs are
better suited to perform inference. Like Bayes nets, factor graphs allow
us to specify a joint density as a product of factors. However, they are
more general in that they can be used to specify any factored function
φ(X) over a set of variables X, not just probability densities.

To motivate this, consider performing MAP inference for the toy
SLAM example. After conditioning on the observed measurements Z,
the posterior p(X|Z) can be re-written using Bayes’ law (1.16) as

p(X|Z) ∝ p(x1)p(x2|x1)p(x3|x2) (1.20)
× p(l1)p(l2) (1.21)
× l(x1; z1) (1.22)
× l(x1, l1; z2)l(x2, l1; z3)l(x3, l2; z4). (1.23)

It is clear that the above represents a factored probability density on
the unknowns only, albeit unnormalized.

To make this factorization explicit, we use a factor graph. Figure
1.3 introduces the corresponding factor graph by example: all unknown
states X, both poses and landmarks, have a node associated with them,
as in the Bayes net. However, unlike the Bayes net case, measurements
are not represented explicitly as they are given, and hence not of inter-
est. Rather than associating each node with a conditional density, in
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x1 x2 x3

l1 l2

Figure 1.3: Factor graph resulting from the Bayes net in Figure 1.2 on page 6 after
conditioning on the measurements Z.

factor graphs we explicitly introduce an additional node type to rep-
resent every factor in the posterior p(X|Z). In the figure, each small
black node represents a factor, and—importantly—is connected to only
those state variables it is a function of. For example, the likelihood fac-
tor l(x3, l2; z4) is connected only to the variable nodes x3 and l2. Using
this as a guide, it should be easy to associate each of the 9 factor nodes
in the graph with the 9 factors in the posterior p(X|Z).

Formally a factor graph is a bipartite graph F = (U ,V, E) with two
types of nodes: factors φi ∈ U and variables xj ∈ V. Edges eij ∈ E are
always between factor nodes and variables nodes. The set of variable
nodes adjacent to a factor φi is written as N (φi), and we write Xi

for an assignment to this set. With these definitions, a factor graph F
defines the factorization of a global function φ(X) as

φ(X) =
∏
i

φi(Xi). (1.24)

In other words, the independence relationships are encoded by the edges
eij of the factor graph, with each factor φi a function of only the vari-
ables Xi in its adjacency set N (φi).

Every Bayes net can be trivially converted to a factor graph. Recall
that every node in a Bayes net denotes a conditional density on the
corresponding variable and its parent nodes. Hence, the conversion is
quite simple: every Bayes net node splits in both a variable node and a
factor node in the corresponding factor graph. The factor is connected
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to the variable node, as well as the variable nodes corresponding to
the parent nodes in the Bayes net. If some nodes in the Bayes net are
evidence nodes, i.e., they are given as known variables, we omit the
corresponding variable nodes: the known variable simply becomes a
fixed parameter in the corresponding factor.

Following this recipe, in the simple SLAM example we obtain the
following factor graph factorization,

φ(l1, l2, x1, x2, x3) = φ1(x1)φ2(x2, x1)φ3(x3, x2) (1.25)
× φ4(l1)φ5(l2) (1.26)
× φ6(x1) (1.27)
× φ7(x1, l1)φ8(x2, l1)φ9(x3, l2), (1.28)

where the correspondence between the factors and the original proba-
bility densities and/or likelihood factors in Equations 1.20-1.23 should
be obvious, e.g., φ7(x1, l1) = l(x1, l1; z2) ∝ p(z2|x1, l1).

1.8 Computations Supported by Factor Graphs

While in the remainder of this document we concentrate on fast op-
timization methods for SLAM, it is of interest to ask what types of
computations are supported by factor graphs in general. Converting a
Bayes net p(X,Z) to a factor graph (by conditioning on the evidence
Z) yields a representation of the posterior φ(X) ∝ p(X|Z), and it is
natural to ask what we can do with this. While in SLAM we will be
able to fully exploit the specific form of the factors to perform very
fast inference, some domain-agnostic operations that are supported are
evaluation, several optimization methods, and sampling.

Given any factor graph defining an unnormalized density φ(X), we
can easily evaluate it for any given value, by simply evaluating every
factor and multiplying the results. Often it is easier to work in log
or negative log-space because of the small numbers involved, in which
case we have to sum as many numbers as there are factors. Evaluation
opens up the way to optimization, and nearly all gradient-agnostic
optimization methods can be applied. If the factors are differentiable
functions in continuous variables, gradient-based methods can quickly
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find local maxima of the posterior. In the case of discrete variables,
graph search methods can be applied, but they can often be quite costly.
The hardest problems involve both discrete and continuous variables.

While local or global maxima of the posterior are often of most
interest, sampling from a probability density can be used to visualize,
explore, and compute statistics and expected values associated with
the posterior. However, the ancestral sampling method from Section
1.5 only applies to directed acyclic graphs. The general sampling algo-
rithms that are most useful for factor graphs are Markov chain Monte
Carlo (MCMC) methods. One such method is Gibbs sampling, which
proceeds by sampling one variable at a time from its conditional den-
sity given all other variables it is connected to via factors. This assumes
that this conditional density can be easily obtained, however, which is
true for discrete variables but far from obvious in the general case.

Below we use factor graphs as the organizing principle for all sec-
tions on specific inference algorithms. They aptly describe the inde-
pendence assumptions and sparse nature of the large nonlinear least-
squares problems arising in robotics, and that is where we start in the
next section. But their usefulness extends far beyond that: they are
at the core of the sparse linear solvers we use as building blocks, they
clearly show the nature of filtering and incremental inference, and lead
naturally to distributed and/or parallel versions of robotics. Before we
dive in, we first lay out the roadmap for the remainder of the document.

1.9 Roadmap

In the next section, Section 2, we discuss nonlinear optimization
techniques for solving the map inference problem in SLAM. Doing so
requires repeatedly solving large sparse linear systems, but we do not go
into detail on how this is done. The resulting graph-based optimization
methods are now the most popular methods for the SLAM problem,
at least when solved offline or in batch.

In Section 3 we make the connection between factor graphs and
sparse linear algebra more explicit. While there exist efficient soft-
ware libraries to solve sparse linear systems, these are but instantiations
of a much more general algorithm: the elimination algorithm.
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In Section 4 we discuss elimination ordering strategies and their
effect on performance. This will also allow us to understand, in Section
5, the effects of marginalizing out variables, and its possibly delete-
rious effect on sparsity, especially in the SLAM case. Other inference
problems in robotics do benefit from only keeping track of the most re-
cent state estimate, which leads to filtering and/or fixed-lag smoothing
algorithms.

In Section 5 we discuss incremental factorization and re-
interpret it in terms of graphical models. We introduce the Bayes tree to
establish a connection between sparse matrix factorization and graphi-
cal models, based on which incremental smoothing and mapping algo-
rithms are developed.

While in many robotics problems we can get away with vector-
valued unknowns, 3D rotations and other nonlinear manifolds need
slightly more sophisticated machinery. Hence, in Section 6 we discuss
optimization on manifolds.

1.10 Bibliographic Remarks

The SLAM problem [174, 129, 186] has received considerable attention
in mobile robotics as it is one way to enable a robot to explore and nav-
igate previously unknown environments. In addition, in many applica-
tions the map of the environment itself is the artifact of interest, e.g., in
urban reconstruction, search-and-rescue operations, and battlefield re-
connaissance. As such, it is one of the core competencies of autonomous
robots [187]. A comprehensive review was done by Durrant-Whyte and
Bailey in 2006 [59, 6] and more recently by Cadena et al. [19], but the
field is still generating a steady stream of contributions at the top-tier
robotics conferences.

The foundational book by Pearl [163] is still one of the best places
to read about Bayesian probability and Bayesian networks, as is the
tome by Koller and Friedman [121], and the book by Darwiche [38].
Although in these works the emphasis is (mostly) on problems with
discrete-valued unknowns, they can just as easily be applied to contin-
uous estimation problems like SLAM.
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Because of their ability to represent the unnormalized posterior for
MAP inference problems, factor graphs are an ideal graphical model
for probabilistic robotics. However, factor graphs are also used exten-
sively in a variety of other computer science fields, including Boolean
satisfiability, constraint satisfaction, and machine learning. Excellent
overviews of factor graphs and their applications are given by Kschis-
chang et al. [125], and Loeliger [139].

Markov chain Monte Carlo (MCMC) and Gibbs sampling provide
a way to sample over high-dimensional state-spaces as described by
factor graphs, and are discussed in [151, 82, 55].



2
Smoothing and Mapping

Below we discuss the smoothing and mapping (SAM) algorithm, which
is representative of the state of the art in batch solutions for SLAM.
We explain the nonlinear optimization techniques for solving arbitrary
nonlinear factor graphs, which requires repeatedly solving large sparse
linear systems. In this section we will not go into detail on sparse linear
algebra, but defer that to the next section.

2.1 Factor Graphs in SLAM

The factor graph for a more realistic SLAM problem than the toy ex-
ample from the previous section could look something like Figure 2.1.
This graph was created by simulating a 2D robot, moving in the plane
for about 100 time steps, as it observes landmarks. For visualization
purposes each robot pose and landmark is rendered at its ground truth
position in 2D. With this, we see that the odometry factors form a
prominent, chain-like backbone, whereas off to the sides binary likeli-
hood factors are connected to the 20 or so landmarks. All factors in
such SLAM problems are typically nonlinear, except for priors.

17
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Figure 2.1: Factor graph for a larger, simulated SLAM example.

Simply examining the factor graph reveals a great deal of structure
by which we can gain insight into a particular instance of the SLAM
problem. First, there are landmarks with a large number of measure-
ments, which we expect to be pinned down very well. Others have only
a tenuous connection to the graph, and hence we expect them to be less
well determined. For example, the lone landmark near the bottom-right
has only a single measurement associated with it: if this is a bearing-
only measurement, many assignments of a 2D location to the landmark
will be equally “correct”. This is the same as saying that we have infi-
nite uncertainty in some subset of the domain of the unknowns, which
is where prior knowledge should come to the rescue.

MAP inference in SLAM is exactly the process of determining those
values for the unknowns that maximally agree with the information
present in the uncertain measurements. In real life we are not given
the ground truth locations for the landmarks, nor the time-varying pose
of the robot, although in many practical cases we might have a good
initial estimate. Below we show how to find an optimal assignment,
the MAP estimate, through nonlinear optimization over the unknown
variables in the factor graph.
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2.2 MAP Inference for Nonlinear Factor Graphs

We now show that MAP inference for SLAM problems with Gaussian
noise models is equivalent to solving a nonlinear least-squares problem.
Indeed, for an arbitrary factor graph, MAP inference comes down to
maximizing the product (1.24) of all factor graph potentials:

XMAP = argmax
X

φ(X) (2.1)

= argmax
X

∏
i

φi(Xi). (2.2)

Let us for now assume that all factors are of the form

φi(Xi) ∝ exp
{
−1

2 ‖hi(Xi)− zi‖2Σi

}
, (2.3)

which include both simple Gaussian priors and likelihood factors de-
rived from measurements corrupted by zero-mean, normally distributed
noise. Taking the negative log of (2.2) and dropping the factor 1/2 allows
us to instead minimize a sum of nonlinear least-squares:

XMAP = argmin
X

∑
i

‖hi(Xi)− zi‖2Σi
. (2.4)

Minimizing this objective function performs sensor fusion through the
process of combining several measurement-derived likelihood factors,
and possibly several priors, to uniquely determine the MAP solution
for the unknowns.

An important and non-obvious observation is that the factors in
(2.4) typically represent rather uninformed densities on the involved
unknown variables Xi. Indeed, except for simple prior factors, the mea-
surements zi are typically of lower dimension than the unknowns Xi.
In those cases, the factor by itself accords the same likelihood to an
infinite subset of the domain of Xi. For example, a 2D measurement
in a camera image is consistent with an entire ray of 3D points that
project to the same image location. Only when multiple measurements
are combined can we hope to recover a unique solution for the variables.
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Even though the functions hi are nonlinear, if we have a decent
initial guess available, then nonlinear optimization methods such as
Gauss-Newton iterations or the Levenberg-Marquardt (LM) algorithm
will be able to converge to the global minimum of (2.4). They do so
by solving a succession of linear approximations to (2.4) in order to
approach the minimum [50]. Hence, in the following we first consider
how to build a linearized version of the nonlinear problem.

2.3 Linearization

We can linearize all measurement functions hi(·) in the nonlinear least-
squares objective function (2.4) using a simple Taylor expansion,

hi(Xi) = hi(X0
i + ∆i) ≈ hi(X0

i ) +Hi∆i, (2.5)

where themeasurement Jacobian Hi is defined as the (multivariate)
partial derivative of hi(.) at a given linearization point X0

i ,

Hi
∆= ∂hi(Xi)

∂Xi

∣∣∣∣
X0

i

, (2.6)

and ∆i
∆= Xi − X0

i is the state update vector. Note that we make
an assumption that Xi lives in a vector-space or, equivalently, can be
represented by a vector. This is not always the case, e.g., when some of
the unknown states in X represent 3D rotations or other more complex
manifold types. We will revisit this issue in Section 6.

Substituting the Taylor expansion (2.5) into the nonlinear least-
squares expression (2.4) we obtain a linear least-squares problem in
the state update vector ∆,

∆∗ = argmin
∆

∑
i

∥∥∥hi(X0
i ) +Hi∆i − zi

∥∥∥2

Σi

(2.7)

= argmin
∆

∑
i

∥∥∥Hi∆i −
{
zi − hi(X0

i )
}∥∥∥2

Σi

, (2.8)

where zi − hi(X0
i ) is the prediction error at the linearization point,

i.e. the difference between actual and predicted measurement. Above
∆∗ denotes the solution to the locally linearized problem.
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By a simple change of variables we can drop the covariance matrices
Σi from this point forward: with Σ1/2 the matrix square root of Σ we
can rewrite the Mahalanobis norm of some term e as follows:

‖e‖2Σ
∆= e>Σ−1e =

(
Σ−1/2e

)> (
Σ−1/2e

)
=
∥∥∥Σ−1/2e

∥∥∥2

2
. (2.9)

Hence, we can eliminate the covariances Σi by pre-multiplying the Ja-
cobian Hi and the prediction error in each term in (2.8) with Σ−1/2

i :

Ai = Σ−1/2
i Hi (2.10)

bi = Σ−1/2
i

(
zi − hi(X0

i )
)
. (2.11)

This process is a form of whitening. For example, in the case of scalar
measurements it simply means dividing each term by the measure-
ment standard deviation σi. Note that this eliminates the units of the
measurements (e.g. length, angles) so that the different rows can be
combined into a single cost function.

We finally obtain the following standard least-squares problem,

∆∗ = argmin
∆

∑
i

‖Ai∆i − bi‖22 (2.12)

= argmin
∆

‖A∆− b‖22 , (2.13)

where A and b are obtained by collecting all whitened Jacobian matrices
Ai and whitened prediction errors bi into one large matrix A and right-
hand-side (RHS) vector b, respectively.

The Jacobian A is a large but sparse matrix, with a block structure
that mirrors the structure of the underlying factor graph. We will ex-
amine this sparsity structure in detail in Section 3. First, however, we
review the more classical linear algebra approach below.

2.4 Direct Methods for Least-Squares

For a full-rank m× n matrix A, with m ≥ n, the unique least-squares
solution to (2.13) can be found by solving the normal equations:(

A>A
)

∆∗ = A>b. (2.14)
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This is normally done by factoring the information matrix Λ, defined
and factored as follows:

Λ ∆= A>A = R>R. (2.15)

Above, the Cholesky triangle R is an upper-triangular n×n matrix1
and is computed using Cholesky factorization, a variant of LU fac-
torization for symmetric positive definite matrices. After this, ∆∗ can
be found by solving first

R>y = A>b (2.16)

and then
R∆∗ = y (2.17)

by forward and back-substitution. For dense matrices Cholesky factor-
ization requires n3/3 flops, and the entire algorithm, including comput-
ing half of the symmetric A>A, requires (m+ n/3)n2 flops. One could
also use LDL factorization, a variant of Cholesky decomposition that
avoids the computation of square roots.

An alternative to Cholesky factorization that is more accurate and
more numerically stable is to proceed via QR-factorization, which
works without computing the information matrix Λ. Instead, we com-
pute the QR-factorization of A itself along with its corresponding RHS:

A = Q

[
R

0

] [
d

e

]
= Q>b. (2.18)

Here Q is an m × m orthogonal matrix, d ∈ Rn, e ∈ Rm−n, and R

is the same upper-triangular Cholesky triangle. The preferred method
for factorizing a dense matrix A is to compute R column by column,
proceeding from left to right. For each column j, all non-zero elements
below the diagonal are zeroed out by multiplying A on the left with
a Householder reflection matrix Hj . After n iterations A is com-
pletely factorized:

Hn . . . H2H1A = Q>A =
[
R

0

]
. (2.19)

1Some treatments, including [84], define the Cholesky triangle as the lower-
triangular matrix L = R>, but the other convention is more convenient here.
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The orthogonal matrix Q is not usually formed: instead, the trans-
formed RHS Q>b is computed by appending b as an extra column to
A. Because the Q factor is orthogonal, we have

‖A∆− b‖22 =
∥∥∥Q>A∆−Q>b

∥∥∥2

2
= ‖R∆− d‖22 + ‖e‖22 , (2.20)

where we made use of the equalities from Equation 2.18. Clearly, ‖e‖22
will be the least-squares sum of squared residuals, and the least-squares
solution ∆∗ can be obtained by solving the triangular system

R ∆∗ = d (2.21)

via back-substitution. The cost of QR is dominated by the cost of the
Householder reflections, which is 2(m − n/3)n2. Comparing this with
Cholesky, we see that both algorithms require O(mn2) operations when
m� n, but that QR-factorization is slower by a factor of 2.

Note that the upper-triangular factor R obtained using QR factor-
ization is the same (up to possible sign changes on the diagonal) as
would be obtained by Cholesky factorization, as

A>A =
[
R

0

]>
Q>Q

[
R

0

]
= R>R, (2.22)

where we again made use of the fact that Q is orthogonal.
There are efficient algorithms for factorizing large sparse matrices,

for both QR and Cholesky variants. Depending on the amount of non-
zeros and on the sparsity structure, the cost of a sparse factorization
can be far lower than its dense equivalent. Efficient software implemen-
tations are available, e.g., CHOLMOD [28] and SuiteSparseQR [39],
which are also used under the hood by MATLAB. In practice sparse
Cholesky and LDL factorization outperform QR factorization on sparse
problems as well, and not just by a constant factor.

In summary, the optimization problem associated with SLAM can
be concisely stated in terms of sparse linear algebra. It comes down to
factorizing either the information matrix Λ or the measurement Jaco-
bian A into square root form. Because they are based on matrix square
roots derived from the smoothing and mapping (SAM) problem, we
have referred to this family of approaches as square root SAM, or√
SAM for short [46, 48].
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2.5 Nonlinear Optimization for MAP Inference

Nonlinear least-squares problems cannot be solved directly, but require
an iterative solution starting from a suitable initial estimate. A variety
of algorithms exist that differ in how they locally approximate the cost
function, and in how they find an improved estimate based on that
local approximation. As a reminder, in our case the cost function is

g(X) ∆=
∑
i

‖hi(Xi)− zi‖2Σi
(2.23)

and corresponds to a nonlinear factor graph derived from the measure-
ments along with prior densities on some or all unknowns.

All of the algorithms share the following basic structure: They start
from an initial estimate X0. In each iteration, an update step ∆ is
calculated and applied to obtain the next estimate Xt+1 = Xt + ∆.
This process ends when certain convergence criteria are reached, such
as the change ∆ falling below a small threshold.

2.5.1 Steepest Descent

Steepest descent (SD) or gradient descent uses the direction of steepest
descent at the current estimate to calculate the following update step:

∆sd = −α ∇g (X)|X=Xt . (2.24)

Here the negative gradient is used to identify the direction of steep-
est descent. For the nonlinear least-squares objective function (2.23),
we compute the Jacobian A as in Section 2.3 to locally approx-
imate g(X) ≈

∥∥A(X −Xt)− b
∥∥2

2 and obtain the exact gradient
∇g (X)|X=Xt = −2A>b at the linearization point Xt.

The step size α needs to be carefully chosen to balance between safe
updates and reasonable convergence speed. An explicit line search can
be performed to find a minimum in the given direction. SD is a simple
algorithm, but suffers from slow convergence near the minimum.

2.5.2 Gauss-Newton

Gauss-Newton (GN) provides faster convergence by using a second or-
der update. GN exploits the special structure of the nonlinear least-
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squares problem to approximate the Hessian by the square of the Ja-
cobian as A>A. The GN update step is obtained by solving the normal
equations (2.14)

A>A∆gn = A>b (2.25)
by any of the methods in Section 2.4. For a well-behaved (i.e. nearly
quadratic) objective function and a good initial estimate, Gauss-
Newton exhibits nearly quadratic convergence. If the quadratic fit is
poor, a GN step can lead to a new estimate that is further from the
minimum and subsequent divergence.

2.5.3 Levenberg-Marquardt

The Levenberg-Marquardt (LM) algorithm allows for iterating multiple
times to convergence while controlling in which region one is willing to
trust the quadratic approximation made by Gauss-Newton. Hence, such
a method is often called a trust region method.

To combine the advantages of both the SD and GN methods, Lev-
enberg [133] proposed to modify the normal equations (2.14) by adding
a non-negative constant λ ∈ R+ ∪ {0} to the diagonal(

A>A+ λI
)

∆lb = A>b. (2.26)

Note that for λ = 0 we obtain GN, and for large λ we approximately
obtain ∆∗ ≈ 1

λA
>b, an update in the negative gradient direction of

the cost function g (2.23). Hence, LM can be seen to blend naturally
between the Gauss-Newton and Steepest Descent methods.

Marquardt [144] later proposed to take into account the scaling of
the diagonal entries to provide faster convergence:(

A>A+ λdiag(A>A)
)

∆lm = A>b. (2.27)

This modification causes larger steps in the steepest descent direction
if the gradient is small (nearly flat directions of the objective func-
tion) because there the inverse of the diagonal entries will be large.
Conversely, in steep directions of the objective function the algorithm
becomes more cautious and takes smaller steps. Both modifications of
the normal equations can be interpreted in Bayesian terms as adding
a zero-mean prior to the system.
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Algorithm 2.1 The Levenberg-Marquardt algorithm
1: function LM(g(), X0) . quadratic cost function g(),

. initial estimate X0

2: λ = 10−4

3: t = 0
4: repeat
5: A, b← linearize g(X) at Xt

6: ∆← solve
(
A>A+ λ diag(A>A)

)
∆ = A>b

7: if g(Xt + ∆)<g(Xt) then
8: Xt+1 = Xt + ∆ . accept update
9: λ← λ/10

10: else
11: Xt+1 = Xt . reject update
12: λ← λ ∗ 10
13: t← t+ 1
14: until convergence
15: return Xt . return latest estimate

The LM algorithm is given in Algorithm 2.1. A key difference be-
tween GN and LM is that the latter rejects updates that would lead to
a higher sum of squared residuals. A rejected update means that the
nonlinear function is locally not well-behaved, and smaller steps are
needed. This is achieved by heuristically increasing the value of λ, for
example by multiplying its current value by a factor of 10, and resolving
the modified normal equations. On the other hand, if a step leads to a
reduction of the sum of squared residuals, it is accepted, and the state
estimate is updated accordingly. In this case, λ is reduced (by dividing
by a factor of 10), and the algorithm repeats with a new linearization
point, until convergence.

2.5.4 Dogleg Minimization

Powell’s dogleg (PDL) algorithm [167] can be a more efficient alterna-
tive to LM [140]. A major disadvantage of the Levenberg-Marquardt
algorithm is that in case a step gets rejected, the modified information
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Gauss-Newton update

Gradient descent update

Dog leg update

Current

estimate

Trust region

Figure 2.2: Powell’s dogleg algorithm combines the separately computed Gauss-
Newton and gradient descent update steps.

matrix has to be refactored, which is the most expensive component of
the algorithm. Hence, the key idea behind PDL is to separately com-
pute the GN and SD steps, and then combine appropriately. If the step
gets rejected, the directions of the steps are still valid, and they can be
combined in a different way until a reduction in the cost is achieved.
Hence, each update of the state estimate only involves one matrix fac-
torization, as opposed to several.

Figure 2.2 shows how the GN and SD steps are combined. The com-
bined step starts with the SD update, followed by a sharp bend (hence
the term dogleg) towards the GN update, but stopping at the trust
region boundary. Unlike LM, PDL maintains an explicit trust region
∆ within which we trust the linear assumption. The appropriateness
of the linear approximation is determined by the gain ratio

ρ = g(Xt)− g(Xt + ∆)
L(0)− L(∆) , (2.28)

where L(∆) = A>A∆ − A>b is the linearization of the nonlinear
quadratic cost function g from Equation 2.23 at the current estimate
Xt. If ρ is small, i.e. ρ < 0.25, then the cost has not reduced as pre-
dicted by the linearization and the trust region is reduced. On the other
hand, if the reduction is as predicted (or better), i.e. ρ > 0.75, then
the trust region is increased depending on the magnitude of the update
vector, and the step is accepted.

Both algorithms, GN and PDL, require the measurement Jaco-
bian to be full rank so that A>A is invertible. When encountering
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under-constrained systems (insufficient measurements) or for numeri-
cally poorly constrained systems, the LM algorithm can be used in-
stead, even though its convergence speed might be impacted.

2.6 Bibliographic Remarks

There is a large body of literature on the field of robot localization
and mapping. A general overview of the area of SLAM can be found
in [19, 59, 6, 187, 186]. Initial work on probabilistic SLAM was based
on the extended Kalman filter (EKF) and is due to Smith et al. [176],
building on earlier work [174, 175, 58]. In Section 4 we will treat the
EKF more thoroughly, but in essence it recursively estimates a Gaus-
sian density over the current pose of the robot and the position of all
landmarks. However, as we will see, the computational complexity of
the EKF becomes intractable fairly quickly. Many attempts were made
to extending the filtering approach to cope with larger-scale environ-
ments [26, 52, 130, 91, 184, 188, 92], but filtering itself was shown to
be inconsistent [105] when applied to the inherently nonlinear SLAM
problem. This is mainly due to linearization choices that cannot be un-
done in a filtering framework. Later work [91, 120] focuses on reducing
the effect of nonlinearities and providing more efficient, but typically
approximate solutions to deal with larger environments.

A smoothing approach to SLAM involves not just the most current
robot location, but the entire robot trajectory up to the current time.
A number of authors consider the problem of smoothing the robot tra-
jectory only [27, 141, 142, 94, 122, 61], which is particularly suited to
sensors such as laser-range finders that easily yield pairwise constraints
between nearby robot poses. More generally, one can consider the full
SLAM problem [187], i.e., the problem of optimally estimating the en-
tire set of sensor poses along with the parameters of all features in the
environment. In fact, this problem has a long history in surveying [85],
photogrammetry [18, 87, 173, 31], where it is known as “bundle adjust-
ment”, and computer vision [64, 181, 182, 191, 95], where it is referred
to as “structure from motion”. These then led to a flurry of work be-
tween 2000 and 2005 where these ideas were applied in the context of
SLAM [56, 71, 70, 187].



2.6. Bibliographic Remarks 29

Square root SAM was introduced in [46, 48] as a fundamentally
better approach to the problem of SLAM than the EKF, based on the
realization that,

• in contrast to the filtering-based covariance or information ma-
trices, which both become fully dense over time [160, 188], the in-
formation matrix associated with smoothing is and stays sparse;

• in typical mapping scenarios (i.e., not repeatedly traversing a
small environment) this matrix is a much more compact repre-
sentation of the map covariance structure;

• the information matrix or measurement Jacobian can be factor-
ized efficiently using sparse Cholesky or QR factorization, respec-
tively, yielding a square root information matrix that can be used
to immediately obtain the optimal robot trajectory and map.

Factoring the information matrix is known in the sequential estima-
tion literature as square root information filtering (SRIF), and was
developed in 1969 for use in JPL’s Mariner 10 missions to Venus (as
recounted by Bierman [14]). The use of square roots results in more
accurate and stable algorithms, and, quoting Maybeck [145] “a number
of practitioners have argued, with considerable logic, that square root
filters should always be adopted in preference to the standard Kalman
filter recursion”. Maybeck briefly discusses the SRIF in a chapter on
square root filtering, and it and other square root type algorithms are
the subject of a book by Bierman [14].

Suitable nonlinear solvers are needed to apply the smoothing ap-
proach to measurement functions. A general in depth treatment of non-
linear solvers is provided by [155], while [84] focuses on the linear alge-
bra perspective. The most basic nonlinear solver applicable to smooth-
ing is the well-known Gauss-Newton algorithm. A more advanced and
frequently used algorithm is Levenberg-Marquardt [133, 144]—this is
also the algorithm used for square root SAM. Powell’s dog leg [167, 140]
can provide improved efficiency, and, as we will later see, is essential
when incrementally updating matrix factorizations.



3
Exploiting Sparsity

As we saw in the previous section, performing MAP inference in nonlin-
ear SLAM requires repeatedly solving large (but sparse) linear systems.
While there exist efficient software libraries to solve these, these are but
instantiations of a much more general algorithm. Sparse linear algebra
is just the special case for linear-Gaussian factors, i.e., where all priors
and measurements are assumed Gaussian, and only linear measure-
ment functions are involved. The sparse structure of the factor graph
is the key to understanding this more general algorithm, and hence also
understanding (and improving) sparse factorization methods.

3.1 On Sparsity

3.1.1 Motivating Example

Dense methods will not scale to realistic problem sizes in SLAM. In the
introduction we looked at a small toy problem to explain Bayes nets and
factor graph formulations, for which a dense method will work fine. The
larger simulation example, with its factor graph shown in Figure 2.1 on
page 18, is more representative of real-world problems. However, it is
still relatively small as real SLAM problems go, where problems with

30
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thousands or even millions of unknowns are not unheard of. Yet, we
are able to handle these without a problem because of sparsity.

The sparsity can be appreciated directly from looking at the factor
graph. It is clear from Figure 2.1 that the graph is sparse, i.e., it is
by no means a fully connected graph. The odometry chain linking the
100 unknown poses is a linear structure of 100 binary factors, instead
of the possible 1002 (binary) factors. In addition, with 20 landmarks
we could have up to 2000 likelihood factors linking each landmark to
each pose: the true number is closer to 400. And finally, there are no
factors between landmarks at all. This reflects that we have not been
given any information about their relative position. This structure is
typical of most SLAM problems.

Below we will try to fully understand the sparse structure of these
problems. We use the toy problem from the introduction as an illustra-
tion throughout. Then, at the end of this section we show how these
concepts translate to the larger example, and to real-world problems.

3.1.2 The Sparse Jacobian and its Factor Graph

The key to modern SLAM algorithms is exploiting sparsity, and an
important property of factor graphs in SLAM is that they represent
the sparse block structure in the resulting sparse Jacobian matrix A.
To see this, let us revisit the least-squares problem that is the key
computation in the inner loop of the nonlinear SLAM problem:

∆∗ = argmin
∆

∑
i

‖Ai∆i − bi‖22 . (3.1)

Each term above is derived from a factor in the original, nonlin-
ear SLAM problem, linearized around the current linearization point
(Equation 2.8). The matrices Ai can be broken up in blocks correspond-
ing to each variable, and collected in a large, block-sparse Jacobian
whose sparsity structure is given exactly by the factor graph.

Even though these linear problems typically arise as inner iterations
in nonlinear optimization, we drop the ∆ notation below, as everything
holds for general linear problems regardless of their origin.

Example. Consider the factor graph for the small toy example,
shown again for convenience in Figure 3.1. After linearization, we ob-
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x1 x2 x3

l1 l2

Figure 3.1: Factor graph (again) for the toy SLAM example.
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Figure 3.2: Block structure of the sparse Jacobian A for the toy SLAM example
with ∆ =
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>
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)>.

tain a sparse system [A|b] with the block structure in Figure 3.2. Com-
paring this with the factor graph, it is obvious that every factor cor-
responds to a block row, and every variable corresponds to a block
column of A. In total there are nine block-rows, one for every factor in
the factorization of φ(l1, l2, x1, x2, x3).

3.1.3 The Sparse Information Matrix and its Graph

When using Cholesky factorization for solving the normal equations,
as explained in Section 2.4, we first form the Hessian or information
matrix Λ = A>A. In general, since the Jacobian A is block-sparse, the
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Figure 3.3: The Hessian matrix Λ ∆= A>A for the toy SLAM problem.

x1 x2 x3

l1 l2

Figure 3.4: The Hessian matrix Λ can be interpreted as the matrix associated with
the Markov random field representation for the problem.

Hessian Λ is expected to be sparse as well. By construction, the Hessian
is a symmetric matrix, and if a unique MAP solution to the problem
exists, it is also positive definite.

The information matrix Λ can be associated with yet another, undi-
rected graphical model for the SLAM problem, namely a Markov ran-
dom field or MRF. In contrast to a factor graph, an MRF is a graphical
model that involves only the variables, just like a Bayes net. But unlike
a Bayes net, the graph G of an MRF is an undirected graph: the edges
only indicate that there is some interaction between the variables in-
volved. At the block-level, the sparsity pattern of Λ = A>A is exactly
the adjacency matrix of G.

Example. Figure 3.3 shows the information matrix Λ associated
with our running toy example. In this case there are five variables
that partition the Hessian as shown. The zero blocks indicate which
variables do not interact, e.g., l1 and l2 have no direct interaction.
Figure 3.4 shows the corresponding MRF.

In what follows we will frequently refer to the undirected graph G
of the MRF associated with an inference problem. However, we will not
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use the MRF graphical model much beyond that. Note that one can
develop an equivalent theory of how MRFs represent a different family
of factored probability densities, see e.g. Koller and Friedman [121]. In
the linear-Gaussian case, for instance, the least-squares error can be
re-written as

‖A∆− b‖22 = ∆>A>A∆− 2∆>A>b+ b>b (3.2)
= b>b− 2

∑
j

g>j ∆j +
∑
ij

∆>i Λij∆j , (3.3)

where g ∆= A>b. After exponentiating, we see that the induced Gaussian
density has the form

p(∆) ∝ exp
(
−‖A∆− b‖22

)
∝
∏
j

φj(∆j)
∏
ij

ψj(∆i,∆j), (3.4)

which is the general form for densities induced by binary MRFs [204].
In what follows, however, factor graphs are better suited to our

needs. They are able to express a finer-grained factorization, and are
more closely related to the original problem formulation. For example,
if there exist ternary (or higher arity) factors in the factor graph, the
graph G of the equivalent MRF connects those nodes in an undirected
clique (a fully connected subgraph), but the origin of the corresponding
clique potential is lost. In linear algebra, this reflects the fact that many
matrices A can yield the same Λ = A>Amatrix: important information
on the sparsity is lost.

3.2 The Elimination Algorithm

There exists a general algorithm that, given any (preferably sparse)
factor graph, can compute the corresponding posterior density p(X|Z)
on the unknown variables X in a form that allows easy recovery of the
MAP solution to the problem. As we saw, a factor graph represents
the unnormalized posterior φ(X) ∝ P (X|Z) as a product of factors,
and in SLAM problems this graph is typically generated directly from
the measurements. The elimination algorithm is a recipe for converting
a factor graph back to a Bayes net, but now only on the unknown
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Algorithm 3.1 The Variable Elimination Algorithm
1: function Eliminate(Φ1:n) . given a factor graph on n variables
2: for j = 1...n do . for all variables
3: p(xj |Sj),Φj+1:n ← EliminateOne(Φj:n, xj) . eliminate xj
4: return p(x1|S1)p(x2|S2) . . . p(xn) . return Bayes net

Algorithm 3.2 Eliminate variable xj from a factor graph Φj:n.
1: function EliminateOne(Φj:n, xj) . given reduced graph Φj:n
2: Remove all factors φi(Xi) that are adjacent to xj
3: S(xj) ← all variables involved excluding xj . the separator
4: ψ(xj , Sj)←

∏
i φi(Xi) . create the product factor ψ

5: p(xj |Sj)τ(Sj)← ψ(xj , Sj) . factorize the product ψ
6: Add the new factor τ(Sj) back into the graph
7: return p(xj |Sj),Φj+1:n . Conditional and reduced graph

variables X. This then allows for easy MAP inference, and even other
operations such as sampling (as we saw before) and/or marginalization.

In particular, the variable elimination algorithm is a way to fac-
torize any factor graph of the form

φ(X) = φ(x1, . . . , xn) (3.5)

into a factored Bayes net probability density of the form

p(X) = p(x1|S1)p(x2|S2) . . . p(xn) =
∏
j

p(xj |Sj), (3.6)

where Sj denotes an assignment to the separator S(xj) associated
with variable xj under the chosen variable ordering x1, . . . , xn. The
separator is defined as the set of variables on which xj is conditioned,
after elimination. While this factorization is akin to the chain rule,
eliminating a sparse factor graph will typically lead to small separators.

The elimination algorithm is listed as Algorithm 3.1, where we used
the shorthand notation Φj:n

∆= φ(xj , . . . , xn) to denote a partially elimi-
nated factor graph. The algorithm proceeds by eliminating one variable
xj at a time, starting with the complete factor graph Φ1:n. As we elim-
inate each variable xj , the function EliminateOne produces a single
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Figure 3.5: Variable elimination for the toy SLAM example, transforming the
factor graph from Figure 3.1 into a Bayes net, using the ordering l1, l2, x1, x2, x3.

conditional p(xj |Sj), as well as a reduced factor graph Φj+1:n on the
remaining variables. After all variables have been eliminated, the algo-
rithm returns the resulting Bayes net with the desired factorization.

The pseudo-code for eliminating a single variable xj is listed as
Algorithm 3.2. Given a partially eliminated factor graph Φj:n, we first
remove all factors φi(xi) that are adjacent to xj and multiply them
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into the product factor ψ(xj , Sj). We then factorize ψ(xj , Sj) into a
conditional distribution p(xj |Sj) on the eliminated variable xj , and a
new factor τ(Sj) on the separator S(xj):

ψ(xj , Sj) = p(xj |Sj)τ(Sj). (3.7)

Hence, the entire factorization from φ(X) to p(X) is seen to be a succes-
sion of n local factorization steps. When eliminating the last variable
xn the separator S(xn) will be empty, and the conditional produced
will simply be a prior p(xn) on xn.

Example. One possible elimination sequence for the toy example
is shown in Figure 3.5, for the ordering l1, l2, x1, x2, x3. In each step,
the variable being eliminated is shaded gray, and the new factor τ(Sj)
on the separator Sj is shown in red. Taken as a whole, the variable
elimination algorithm factorizes the factor graph φ(l1, l2, x1, x2, x3) into
the Bayes net in Figure 3.5, corresponding to the factorization

p(l1, l2, x1, x2, x3) = p(l1|x1, x2)p(l2|x3)
p(x1|x2)p(x2|x3)p(x3). (3.8)

3.3 Sparse Matrix Factorization as Variable Elimination

In the case of linear measurement functions and additive normally dis-
tributed noise, the elimination algorithm is equivalent to sparse matrix
factorization. Both sparse Cholesky and QR factorization are a special
case of the general algorithm.

3.3.1 Sparse Gaussian Factors

Let us consider the elimination of a single variable xj , as outlined in
Algorithm 3.2 on page 35. In the least-squares problem (3.1), all factors
are of the form

φi(Xi) = exp
{
−1

2 ‖AiXi − bi‖22
}
, (3.9)

where Xi are all the variables involved in factor φi, with Ai composed
of smaller sub-blocks corresponding to each variable.
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Example. The linearized factor φ7 between l1 and x1 in the toy
SLAM example is equal to

φ7(l1, x1) = exp
{
−1

2 ‖A71 l1 +A73 x1 − b7‖22
}
, (3.10)

which corresponds to

A7
∆= [A71|A73] (3.11)

X7
∆= [l1;x1] , (3.12)

where we use the semicolon to indicate concatenation of column vectors.

3.3.2 Forming the Product Factor

As explained before, the elimination algorithm proceeds one variable
at a time. Following Algorithm 3.2, for every variable xj we remove all
factors φi(Xi) adjacent to xj , and form the intermediate product factor
ψ(xj , Sj). This can be done by accumulating all the matrices Ai into a
new, larger block-matrix Āj , as we can write

ψ(xj , Sj) ←
∏
i

φi(Xi) (3.13)

= exp
{
−1

2
∑
i

‖AiXi − bi‖22

}
(3.14)

= exp
{
−1

2
∥∥∥Āj [xj ;Sj ]− b̄j∥∥∥2

2

}
, (3.15)

where the new RHS vector b̄j stacks all bi.
Example. Consider eliminating the variable l1 in the toy example.

The adjacent factors are φ4, φ7 and φ8, in turn inducing the separator
S1 = [x1;x2]. The product factor is then equal to

ψ (l1, x1, x2) = exp
{
−1

2
∥∥∥Ā1[l1;x1;x2]− b̄1

∥∥∥2

2

}
, (3.16)

with

Ā1
∆=

 A41
A71 A73
A81 A84

 , b̄1
∆=

 b4
b7
b8

 . (3.17)
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Looking at the sparse Jacobian in Figure 3.2 on page 32, this simply
boils down to taking out the block rows with non-zero blocks in the
first column, corresponding to the three factors adjacent to l1.

3.3.3 Eliminating a Variable using Partial QR

Factorizing the product ψ(xj , Sj) can be done in several different ways.
We first discuss the QR variant, as it more directly connects to the
linearized factors. In particular, the augmented matrix [Āj |b̄j ] corre-
sponding to the product factor ψ(xj , Sj) can be rewritten using partial
QR-factorization [84] as follows:

[Āj |b̄j ] = Q

[
Rj Tj dj

Ãτ b̃τ

]
, (3.18)

where Rj is an upper-triangular matrix. This allows us to factor
ψ(xj , Sj) as follows:

ψ(xj , Sj) = exp
{
−1

2
∥∥∥Āj [xj ;Sj ]− b̄j∥∥∥2

2

}
(3.19)

= exp
{
−1

2 ‖Rjxj + TjSj − dj‖22
}

exp
{
−1

2
∥∥∥ÃτSj − b̃τ∥∥∥2

2

}
= p(xj |Sj)τ(Sj), (3.20)

where we used the fact that the rotation matrix Q does not alter the
value of the norms involved.

Example. In Figure 3.6 we show the result of eliminating the first
variable in the example, the landmark l1 with separator {x1, x2}. We
show the operation on the factor graph and the corresponding effect on
the sparse Jacobian from Figure 3.2, omitting the RHS. The partition
above the line corresponds to a sparse, upper-triangular matrix R that
is being formed. New contributions to the matrix are shown in boldface:
blue for the contributions to R, and red for newly created factors.

3.3.4 Multifrontal QR Factorization

The entire elimination algorithm, using partial QR to eliminate a single
variable, is equivalent to sparse QR factorization. As the treatment
above considers multi-dimensional variables xj ∈ Rnj , this is in fact an
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Figure 3.6: Eliminating the variable l1 as a partial sparse factorization step.

instance of multi-frontal QR factorization [57], as we eliminate several
scalar variables at a time, which is beneficial for processor utilization.
While in our case the scalar variables are grouped because of their
semantic meaning in the inference problem, sparse linear algebra codes
typically analyze the problem to group for maximum computational
efficiency. In many cases these two strategies are closely aligned.

Example. For completeness, we show the four remaining variable
elimination steps in Figure 3.7, showing an end-to-end example of how
multifrontal QR factorization proceeds on a small example. The final
step shows the equivalence between the resulting Bayes net and the
sparse upper-triangular factor R.
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Ã25
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Figure 3.7: The remaining elimination steps for the toy example, completing a full
multifrontal QR factorization.
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3.4 The Sparse Cholesky Factor as a Bayes Net

The equivalence between variable elimination and sparse matrix fac-
torization reveals that the graphical model associated with an upper
triangular matrix is a Bayes net! Just like a factor graph is the graphical
embodiment of a sparse Jacobian, and an MRF can be associated with
the Hessian, a Bayes net reveals the sparsity structure of a Cholesky
factor. In hindsight, this perhaps is not too surprising: a Bayes net
is a directed acyclic graph (DAG), and that is exactly the “upper-
triangular” property for matrices.

What’s more, the Cholesky factor corresponds to a Gaussian
Bayes net, which we defined as one made up of linear-Gaussian condi-
tionals. The variable elimination algorithm holds for general densities,
but in case the factor graph only contains linear measurement func-
tions and Gaussian additive noise, the resulting Bayes net has a very
specific form. We discuss the details below, as well as how to solve for
the MAP estimate in the linear case.

3.4.1 Linear-Gaussian Conditionals

As we discussed in Section 3.2 on page 34 on the elimination algorithm
in general, the Gaussian factor graph corresponding to the linearized
nonlinear problem is transformed by elimination into the density P (X)
given by the now familiar Bayes net factorization:

P (X) =
∏
j

p(xj |Sj). (3.21)

In both QR and Cholesky variants, the conditional densities p(xj |Sj)
are given by

p(xj |Sj) = k exp
{
−1

2 ‖Rjxj + TjSj − dj‖22
}
, (3.22)

which is a linear-Gaussian density on the eliminated variable xj . Indeed,
we have

‖Rjxj + TjSj − dj‖22 = (xj − µj)>R>j Rj (xj − µj)
∆= ‖xj − µj‖2Σj

,

(3.23)
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where the mean µj = R−1
j (dj−TjSj) depends linearly on the separator

Sj , and the covariance matrix is given by Σj = (R>j Rj)−1. Hence, the
normalization constant k = |2πΣj |−

1/2.

3.4.2 Solving a Bayes Net is Back-substitution

After the elimination step is complete, back-substitution is used to
obtain the MAP estimate of each variable. As seen in Figure 3.7, the
last variable eliminated does not depend on any other variables. Thus,
the MAP estimate of the last variable can be directly extracted from
the Bayes net. By proceeding in reverse elimination order, the values of
all the separator variables for each conditional will always be available
from the previous steps, allowing the estimate for the current frontal
variable to be computed.

Algorithm 3.3 Back-substitution in Bayes Net
1: function Solve(p(X)) . given Gaussian Bayes net on n variables
2: for j = n...1 do . reverse elimination order
3: x∗j ← R−1

j (dj − TjS∗j ) . solve for x∗j given separator S∗j

The solving procedure is summarized in Algorithm 3.3. At every
step, the MAP estimate for the variable xj is the conditional mean,

x∗j = R−1
j (dj − TjS∗j ), (3.24)

since by construction the MAP estimate for the separator S∗j is fully
known by this point.

3.5 Discussion

Above we show how the elimination algorithm can be used to efficiently
solve the linear systems created as part of MAP inference in SLAM,
and this generalizes to other applications. In particular, we show that
using partial QR factorization, when eliminating a single variable, leads
to a well-known sparse matrix factorization method. One could then
rightfully ask why all this matters, since efficient codes exist to solve
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sparse linear systems. The reason we think it matters is because it
provides insight, and because the elimination approach is more general
than just linear algebra.

The interpretation in terms of probabilistic graphical models is not
something that is appreciated by the sparse linear algebra community.
There, researchers are concerned with linear systems regardless of their
provenance. They could derive from applications as diverse as fluid dy-
namics, airplane design, or weather forecasting, and hence the software
packages have to treat them in a generic way. However, in robotics,
and indeed other continuous estimation problems, it is advantageous
to reason in terms of Bayesian probabilities and MAP inference. The
explanation above makes this connection explicit, and highlights how
sparse linear algebra can be used as the computational engine.

In a very real sense, sparse linear algebra factorization methods
are just a special case of a much more general algorithm, and this
opens the door to algorithmic innovation and/or judicious, informed
approximations. When stating the algorithm, we did not specify that
the densities involved needed to be Gaussian, or even that the variables
need to be continuous. The very same algorithm can perform MAP
inference and/or marginalization in discrete problems, or even mixed
discrete-continuous problems.

In the next sections, we will deepen this connection and describe
both old and new algorithms in this new light.

3.6 Bibliographic Remarks

The variable elimination algorithm originated in order to solve systems
of linear equations. It was first applied in modern times by Gauss in
the early 1800s [75, see article 180 on page 262 of the English transla-
tion]. He was interested in solving least-squares problems related to as-
tronomy, in particular, computing the orbit of the “planets” Ceres and
Pallas [75, 76]. The method he discovered is now known as Cholesky fac-
torization, an elimination variant for least-squares problems. However,
the algorithm which we now commonly refer to as Gaussian elimination
was already known to the Chinese in the 2nd century B.C.
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A graphical view of the elimination process first appeared in the
analysis of large systems of sparse linear equations. Modern linear al-
gebra originated after WWII with the advent of digital computers, and
matrix factorization methods revolutionized matrix computations (see
Stewart [178] and the references therein). Parter [159] seems to have
been the first to analyze sparse matrices using graphs and study differ-
ent triangulations of a graph. He describes Cholesky factorization on
this graph by repeatedly choosing a vertex v, adding edges to make the
neighborhood of v into a clique, and then removing v from the graph.

Whereas sparse symmetric matrices are represented by undirected
graphs, non-symmetric matrices and their factorizations (most notably
QR factorization) can be analyzed by means of bipartite graphs [79, 81].
In bipartite graphs, elimination is done via a bipartite elimination game,
as described by Heggernes and Matstoms [97]. These graphs, of course,
are the symbolic equivalent of the factor graphs we discuss in this
article.

The view of elimination as an algorithm that operates on a graph
allows one to generalize away from linear equations. Carré [25] shows
that all operations can be specified in terms of a semiring (S,⊕,⊗),
and that quite a few shortest path and network flow methods can be
seen as variations of known matrix computations, e.g. the Jacobi and
Gauss-Seidel methods, Jordan elimination, etc.

In fact, the elimination algorithm has popped up in a surprising
variety of fields, making it one of the most important algorithms in
science and engineering. In the early 70s Bertele and Brioschi [10, 11,
12] started using vertex elimination to solve combinatorial optimization
problems via dynamic programming [9]. In relation database theory,
similar methods are used to improve the efficiency of query processing,
see Beeri et al. [8], Fagin et al. [62], Goodman and Shmueli [86].

In parallel, many interesting developments happened in the
constraint-satisfaction literature. In particular, Montanari [148] and
[73] pointed out that a constraint-satisfaction problems (CSP) involv-
ing only binary constraints could be represented by a graph. The con-
nection with linear algebra was made by Seidel [172], who derived an
elimination procedure for binary constraint networks which he called
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the “invasion procedure”. The same algorithm was later rediscovered
by Dechter and Pearl [45] under the name “adaptive consistency”.

In the AI community the development of expert systems spurred the
development of probabilistic reasoning systems, and, in a landmark pa-
per, Pearl [162] developed belief propagation in trees. The tractability
of probabilistic inference in trees was earlier noted by Kelly and Barclay
[115] and also by Cannings et al. [20]. The latter paper also developed
the peeling algorithm, which is essentially variable elimination on an ar-
bitrary graph. Pure elimination algorithms for belief nets, i.e., without
a belief propagation metaphor, were developed by D’Ambrosio [37] and
Zhang and Poole [207], and unified with similar algorithms in the CSP
literature under the name bucket elimination by Dechter [42, 43, 44].

Tanner [183] introduced the use of bipartite graphs to describe low-
density parity-check codes, which were subsequently named Tanner
graphs in the literature. Later, Wiberg et al. [199, 198] rediscovered
Tanner’s work and extended it to include (hidden) state variables [66].
Frey et al. then later built upon the work by Wiberg [198] and intro-
duced factor graphs [74, 125, 124], a generalization of Tanner graphs
where the “factors” can now be arbitrary functions. Kschischang et al.
[125] show how the sum-product algorithm on factor graphs can be
applied to a wide variety of other settings, including behavioral model-
ing, linear codes, trellises and state-space models, Markov chains, and
hidden Markov models; the latter yielding both the Viterbi algorithm
and the Kalman filter as special cases.

In robotics, it was noted by Thrun et al. [188] and others that the
information matrix Λ is the matrix of a Markov random field associ-
ated with the SLAM problem. The objective function in SLAM corre-
sponds to a pairwise Markov random field (MRF) [201, 204] through
the Hammersley-Clifford theorem [201], which associates cliques in
the MRF with potentials. Many more connections between factor
graphs, MRFs and inference problems in robotics were made by us
in [49, 46, 123, 48] and expanded upon here.



4
Elimination Ordering

Insight into the graphs underlying robotics inference, and how their
sparsity is affected by the implementation choices we make, is crucial
for achieving highly performant algorithms. In this section we discuss
elimination ordering strategies and their effect on performance. This
will also allows us, in Section 5, to understand the effects of marginal-
izing out variables, and its possibly deleterious effect on sparsity, espe-
cially in the SLAM case. Other inference problems in robotics benefit
from only keeping track of the most recent state estimate; this leads to
filtering and/or fixed-lag smoothing algorithms.

4.1 Complexity of Elimination

Let us examine the computational complexity of the elimination algo-
rithm 3.1 on page 35. Since we eliminate n variables, the cost is

f(Φ1:n) =
n∑
j=1

g(Φj:n, xj), (4.1)

where g(Φj:n, xj) is the cost of eliminating variable xj from the re-
maining graph Φj:n. Elimination is a general algorithm to transform
a factor graph into a Bayes net that encodes the posterior, and hence

47
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this cost heavily depends on the application. However, for the case of
sparse matrix factorization, the cost of Algorithm 3.2 is dominated by
the partial QR factorization step (Section 3.3.3). The main cost in QR
is incurred by the Householder reflections, which—without going into
detail—take 4mknk flops when applied to an mk×nk matrix. We need
one Householder reflection for every dimension k in xj , hence

g(Φj:n, xj) ≈
nj∑
k=1

4mknk =
nj∑
k=1

4(mj − k)(nj + sj + 1− k), (4.2)

with nj the dimension of the variable xj to be eliminated, sj the size of
the separator Sj , and mj the number of rows in the augmented matrix
[Āj |b̄j ] of the product factor ψ(xj , Sj).

The rather involved calculation above simplifies for a dense, scalar
m× n matrix to the well-known complexity of dense QR [84]:

f(Φ1:n) =
n−1∑
k=1

4(m− k)(n+ 1− k) = 2(m− n/3)n2 +O(mn). (4.3)

However, for the sparse, multifrontal algorithm the flop count will be
much lower than this number. In addition, the multifrontal method
can make use of Level-3 BLAS methods that exploit cache coherence
or even thread parallelism for larger elimination steps [39].

Example. For our running SLAM example, for which the multi-
frontal QR algorithm is shown in Figures 3.6 and 3.7, we have

f(Φ1:5) = 32 + 20 + 488 + 488 + 128 = 1156 flops (4.4)

for the elimination order α = {l1, l2, x1, x2, x3}, and where we assumed
ml1 = ml2 = 2 (as with, for example, bearing-range measurements).
Using the same elimination order for a dense matrix would have yielded

f(Φ1:5) = 1752 + 1304 + 1256 + 608 + 152 = 5072 flops. (4.5)

The dramatic improvement in each elimination step is because of the
smaller number of rows mj and columns nj + sj + 1 involved.
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x1 x2 x3

l1 l2

x3 x2 x1 l2 l1
R1 T12 T14

R2 T23 T24 T25
R3 T34 T35

R4 T45
R5


Figure 4.1: Bayes net resulting from using the ordering x3, x2, x1, l2, l1 for the
robotics example (the reverse ordering from Figure 3.5 on page 36).

4.2 Variable Ordering Matters

The flop count for sparse factorization will be much lower than for a
dense matrix, but can vary dramatically for different elimination or-
derings. While any order will ultimately produce an identical MAP
estimate, the order in which variables are eliminated matters, as differ-
ent orderings lead to Bayes nets with different topologies. This will in
turn affect the computational complexity of the elimination algorithm,
as the sizes sj of the separators at each step are affected. To illustrate,
let us look at two examples below.

Example 1. In our toy example, the result of using the reverse
ordering from before is shown in Figure 4.1. Note that the resulting
Bayes net is almost fully dense: only the first variable eliminated, x3,
is not fully connected to the variables later in the ordering. This figure
should be compared with the final elimination stage of Figure 3.7 on
page 41.

Example 2. A more realistic example shows what is really at stake.
To this end, recall the larger simulation example, with its factor graph
shown in Figure 2.1 on page 18. The sparsity patterns for the corre-
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Figure 4.2: On the left, the measurement Jacobian A associated with the problem
in Figure 2.1, which has 3 × 95 + 2 × 24 = 333 unknowns. The number of rows,
1126, is equal to the number of (scalar) measurements. Also given is the number
of non-zero entries “nnz”. On the right: (top) the information matrix Λ , A>A;
(middle) its upper triangular Cholesky triangle R; (bottom) an alternative factor
amdR obtained with a better variable ordering (COLAMD).
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sponding sparse Jacobian matrix A is shown in Figure 4.2. Also shown
is the pattern for the information matrix Λ , A>A, in the top-right
corner.

On the right of Figure 4.2, we show the resulting upper triangu-
lar Choleksy factor R for two different orderings. Both of them are
sparse, and both of them satisfy R>R = A>A (up to a permutation of
the variables), but they differ in the amount of sparsity they exhibit.
It is exactly this that will determine how expensive it is to factorize
A. The first version of the ordering comes naturally: it eliminates the
poses first, and then the landmarks, leading to a sparse R factor with
9399 non-zeros. In contrast, the sparse factor R in the bottom-right
was obtained by reordering the variables according to the COLAMD
heuristic (Section 4.4.1 below) and only has 4168 non-zeros. Yet back-
substitution gives exactly the same solution for both versions.

4.3 The Concept of Fill-in

Different elimination orderings influence complexity by giving rise to
different separator sizes throughout the elimination process. Larger sep-
arator sizes are the result of fill-in, the creation of dependencies in the
sparse graphs between variables that were previously independent of
each other. Hence, it is natural that we would want to both character-
ize this phenomenon and find ways to minimize it.

Formally, we define fill-in by referring to the structure of the undi-
rected Markov random field G associated with the information matrix
Λ (see Section 3.1.3), and the directed Bayes net associated with the
Cholesky factor R. In general, the structure of R above the diagonal is
identical to that of Λ = A>A = R>R, except for fill-in with non-zeros
in some (or all) places. In graphical terms, these are represented by
directed edges that were not present as undirected edges in G.

Example. Figure 4.3 shows how an unfavorable elimination order
yields three extra edges in the resulting Bayes net on the right, high-
lighted in red, that were not present in G on the left. Also shown are
the information matrix Λ and the Cholesky factor R, with the fill-in
blocks colored red, as well. Note that the sparsity of the information
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x1 x2 x3

l1 l2

x1 x2 x3

l1 l2

x3 x2 x1 l2 l1 x3 x2 x1 l2 l1
Λ11 Λ12 Λ14
Λ21 Λ22 Λ23 Λ25

Λ32 Λ33 Λ35
Λ41 Λ43 Λ44

Λ52 Λ53 Λ55




R1 T12 T14

R2 T23 T24 T25
R3 T34 T35

R4 T45
R5


Figure 4.3: Fill-in occurs when the DAG resulting from elimination into R has
extra edges with respect to the Markov random field G corresponding to Λ.

matrix Λ is not affected by re-ordering the columns and rows (compare
with Figure 3.3 on page 33). In contrast, the matrix R has three extra
non-zero blocks as compared to the last step in Figure 3.7 on page 41.

4.4 Ordering Heuristics

An elimination ordering with minimum fill-in minimizes the cost of the
elimination/factorization algorithm, but finding it is NP-hard. Fortu-
nately, many useful heuristics have been developed to approximate an
optimal ordering.

4.4.1 Minimum Degree Orderings

The two most widely used sparse matrix ordering algorithms for sci-
entific computation on standard desktop machines are based on the
heuristic of first eliminating the least constrained variables of G. This
family of algorithms is known as the minimum degree algorithms.

A first approach is to eliminate all variables of minimal degree in
one call of the elimination function, known as multiple elimination or
minimum degree MMD. In addition indistinguishable nodes are elim-
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inated, whose elimination will not introduce additional dependencies
as they are subsumed by another elimination performed in the same
step. MMD saves time both on updating the graph and determining
the next elimination candidates.

The second approach avoids computing the exact vertex degrees
when eliminating one or more variables, by collecting nodes into cliques.
Only the degrees for the cliques are calculated; an approximate bound
on the degree of the remaining vertices can be kept up to date relatively
cheaply. This algorithm is known as the Approximate Minimum
Degree or AMD method.

4.4.2 Nested Dissection Orderings

A fundamentally different approach to reordering is to apply a divide-
and-conquer paradigm. This is feasible as eliminating a node only in-
duces new constraints for a set of (spatially) direct neighbors. Nested
dissection (ND) algorithms try to exploit this by recursively parti-
tioning the graph and returning a post-fix notation of the partitioning
tree as the ordering.

In nested dissection algorithms the size of the separators are of
central importance. To bound the complexity of the factorization when
using an ND ordering, the f(n)-separator theorem is key, which is a
statement about a class of graphs S:

Theorem 1. (f(n)-Separator Theorem) There exist constants α <
1 and β > 0 such that if G is any n-vertex graph in S, the vertices of G
can be partitioned into three sets A,B,C in a way that no edge joins
a vertex in A with one in B, A nor B contains more than αn vertices,
and C contains no more than βf(n) vertices.

For all classes of graphs S for which a f(n)-theorem holds, an ef-
ficient divide-and-conquer ordering can be found [136]. Note that one
needs to guarantee that the algorithms for the graph partitioning and
local subgraph elimination are less complex than the factorization. The
two most important results are:

• For chain-like graphs we can recursively find constant separators,
and the resulting factorization will cost O(n) flops, i.e., is linear
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in the number of variables. In linear algebra, this corresponds to
the well-known fact that inverting/factorizing a band-diagonal
matrix is linear.

• For planar graphs we can recursively find separators of size less
than 2

√
2n, and the resulting factorization will cost O(n1.5) flops.

The latter result immediately leads to the basic nested dissection
method—as developed for planar graphs. It is given below in Algo-
rithm 4.1.

Algorithm 4.1 Nested Dissection for Planar Graphs

Let G = (V,E) be a graph with n vertices V and a set of edges E.

1. Partition G into subgraphs A,B and C, with |A| , |B| ≤ 2
3n and

|C| ≤ 2
√

2
√
n

2. Repeat Step (1) until |A| , |B| ≤ ε or |A| , |B| = 1

3. Obtain the ordering by putting the binary tree of the recursive
partitioning in post-order, with the nodes of the separating set C
last for every triple of sets.

In practice, a graph partitioning algorithm like METIS [114] is used.
Most algorithms use a two step approach for determining the separators
in the graph. First, they try to find good areas for a cut that preserve
the balance between the induced subgraphs. Second, a refinement algo-
rithm like [116] or [65] is applied. These algorithms can be understood
as variants of bipartite graph matching algorithms as they try to find
the minimal cut between a set of nodes.

4.5 Ordering Heuristics in Robotics

In SLAM, a naive ordering strategy is to eliminate the landmarks first,
and then the poses. This is often called the “Schur-complement trick”,
because when the elimination is written down at the block level the
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Figure 4.4: The so-called “Schur complement trick” eliminates all landmarks first,
but this leads to a very connected graph on the robot poses. Doing the reverse (poses
first) would similarly lead to a fully connected clique of landmarks.

corresponding linear algebra operation involves taking the Schur com-
plement of a matrix. Indeed, if we reorder the columns of the Jacobian
A such that landmarks come first, we can split the matrix A into a
block F corresponding to landmark unknowns, and a block G corre-
sponding to poses (or cameras, in the structure from motion case).
Block elimination then yields

A =
[
F G

]
(4.6)

→ A>A =
[
F>F F>G

G>F G>G

]
(4.7)

→ R =

 F>F F>G

0 G>G−G>F
(
F>F

)−1
F>G

 , (4.8)

where the matrix F>F is block-diagonal, and the lower-right block
in R is known as the Schur complement of F>F . Its inverse is the
covariance matrix on the poses/cameras, which is why it is also known
as the “reduced camera matrix”.
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Figure 4.5: In contrast, an approximate minimum degree ordering (using CO-
LAMD) leads to much less fill-in and considerably faster linear solve steps.

However, “natural” orderings such as the Schur complement trick,
with either landmarks or poses eliminated first, can be quite expensive
as compared to using better heuristics. In structure from motion, with
possibly hundreds of thousands of points, it can be advantageous to use
the Schur complement trick as it is beneficial in terms of cache coher-
ence and locality. But in typical robotics applications even a domain-
independent heuristic such as AMD to eliminate the variables in SLAM
yields substantial computational wins.

Example. Figures 4.4 and 4.5 illustrate this for the simulated
SLAM example from Figure 2.1 on page 18. In Figure 4.4 the land-
marks were eliminated first, leading to a densely connected graph on
the robot poses. Doing the reverse (poses first) would lead to a fully
connected clique of landmarks. In contrast, in Figure 4.5, an approx-
imate minimum degree ordering leads to much less fill-in and consid-
erably faster linear solve steps. Figures 4.6a and 4.6b show the same
again, but now in the form of the matrix sparsity patterns. Note the
dense fill-in on the right, linking the entire trajectory to all landmarks.
Reordering of columns (unknowns) does not affect the sparseness of Λ,
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(a) Original information matrix Λ and its Cholesky triangle.

(b) Information matrix Λ after reordering and its Cholesky triangle.

Figure 4.6: Comparing the information matrix and the Cholesky factor for the two
different orderings from Figures 4.4 and 4.5; nz = number of non-zeros.

but the number of non-zeros in R has dropped from approximately 2.8
million to about 250 thousand.

Because finding an optimal ordering is NP-complete, any piece of
domain-specific information can help a great deal. The above domain
agnostic ordering heuristics go a long way towards minimizing fill-in,
and these methods are built into packages such as MATLAB. However,
when solving a sparse inference problem in MATLAB you are doing
so at the scalar level. A very simple domain-specific heuristic is the
semantic information from the true factor graph at the level of poses
and landmarks, not their scalar components. Figure 4.7 shows a further
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Figure 4.7: By reordering while taking into account the special block structure of
the SLAM problem, the non-zero count can be reduced even further, to about 130K,
a reduction by a factor of 20 with respect to the original R.

improvement by a factor of two by simply applying AMD at the block
level vs. the scalar level.

4.6 Nested Dissection and SLAM

The application of nested dissection orderings is especially relevant to
SLAM, as environments mapped by mobile robots often contain parts
that are spatially separated. A divide-and-conquer scheme is one of the
most promising ways to solve challenging SLAM problems, especially in
large-scale environments. One advantage of submap based approaches
is that the computation can be done in an out-of-core manner, making
it possible to distribute most of the work over multiple computation
resources, increasing the scalability in terms of both time and memory.

Another practical advantage of a divide-and-conquer approach is
that it also leads to a good initialization scheme for batch optimiza-
tion approaches, which is one of the most crucial issues in nonlinear
optimization. By employing a divide-and-conquer approach, we can re-
cursively compute the initializations from the optimized submaps.

Many of these ideas were implemented in the tectonic smoothing
and mapping (TSAM) algorithm [154, 152], which combines nested
dissection and careful initialization. Some partitioning results from that
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Figure 4.8: A nested dissection ordering leads to a hierarchical decomposition of
a SLAM problem, here illustrated on the Victoria park dataset. The figure shows 4
levels of partitioning, leading to an efficient elimination ordering [152].

work are reproduced in Figure 4.8, which shows a recursive partitioning
of the well-known Victoria park dataset. TSAM2 uses a combination of
the METIS package to find a nested dissection ordering at the global
level and then orders the resulting subgraphs locally using AMD.

If the factor graph arising from a SLAM problem can be embed-
ded in a planar graph, nested dissection leads to a provably optimal
O(n1.5) computation bound, as opposed to the O(n3) complexity that
arises when we repeatedly have to factorize a dense matrix. Figure
4.9 illustrates the partitioning process in a simulated block-world, de-
signed to mimic an indoor or urban scenario with lots of occlusion.
The partitionings from (a) to (f) correspond to the cuts of the first
depth-first partitioning recursion. For these types of environments, a
planar embedding of the graph with O(

√
n) separators can be easily
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(f) 

(e) 

(d) 

(c) 

(b) 

(a) 

n
√
n |A| , |B| |C|

(a) 25,000 158.1 12446 108
(b) 12446 111.5 6196 54
(c) 6196 78.7 3071 54
(d) 3071 55.4 1518 36
(e) 1518 38.9 741 36
(f) 741 27.2 362 18

Figure 4.9: Simulated block world example that has a global planar graph struc-
ture. The table shows the level of the ND recursion, the number of nodes n in the
each partition,

√
n, the size of the next partitions and the separator size.

found. To illustrate the
√
n separator theorem at work in these types of

environments, the table in Figure 4.9 shows an example of the relevant
partition and separator sizes for a block-world with 25,000 nodes.

4.7 Bibliographic Remarks

Graph-based representations became especially popular in the finite
element community, where the focus was on reducing the “bandwidth”
of the typically very sparse stiffness matrices in order to speed up
computations [169, 36]. Finding an elimination ordering with minimum
fill is NP-hard, as has long been known in the linear algebra [203,
17] and scientific computation communities [114, 97, 93]. The MMD
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ordering heuristic was introduced in [137], and the algorithm known
as COLAMD in [3, 40]. Both AMD and MMD produce equally good
orderings, but AMD is faster, and it has become the de facto standard.

The nested dissection algorithm was introduced by George [78], but
the seminal work on the complexity of the methods was by Lipton and
Tarjan [136, 135], who introduces the f(n)-separator theorem. Improve-
ments focus on finding the separating subgraphs more efficiently, e.g.,
using spectral analysis [166], partially applied MD-orderings as indica-
tors for good partitions [138], and k-way partitioning methods [114].

The importance of sparsity and variable ordering in robotics was
first discussed in [46, 48], and before that in bundle adjustment in [191].
Agarwal and Olson [2] investigated the performance of several ordering
heuristics on a sample of SLAM problems, and found that COLAMD
and METIS [114] are best overall performers. The Schur complement
trick is an often-used technique in computer vision [191, 96].

The divide-and-conquer scheme has been well studied in the SLAM
community. As early as 1976, Brown [18] first employed the submap
scheme in the aero-triangulation and mapping of city-scale areas. A
recursive partitioning is used to exploit the band diagonal structure
of the linear system in the project, and no nonlinearity is considered.
The submap idea for SLAM problems was also investigated in hierar-
chical SLAM by Estrada et al. [60] with a filtering-based local map
building. Also related is the multi-level relaxation by Frese et al. [71].
Ni et al. [154] introduced tectonic smoothing and mapping (TSAM),
which is a two-level submap-based approach based on factor graphs.
Paz et al. [161] improved the work in [60] by fusing the local maps in a
hierarchical way, which has a nested dissection flavor. A similarly hier-
archical approach was taken in HOG-Man [90] and in a generalization
by Grisetti et al. [89].

The application of ND orderings in SLAM was introduced in [123],
where ND is shown to be optimal for SLAM problems that can be
embedded in a planar graph, a feature of many urban datasets. A
fully recursive, ND-based approach to large-scale SLAM problems was
introduced as TSAM2 by Ni and Dellaert [152]. This work was extended
to handle structure from motion problems in [153].
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Incremental Smoothing and Mapping

In previous sections we have discussed efficient batch optimization al-
gorithms under the assumption that all the data is available in advance.
However, many inference problems in robotics are incremental, mean-
ing that measurements arrive as a temporal sequence, and interme-
diate solutions are needed. It is natural to question whether we can
reuse previous computations or if we have to perform a full batch opti-
mization each time. Below we will see that reuse is possible, leading to
efficient incremental algorithms. We first discuss the linear case, where
we can incrementally update a matrix factorization, using well-known
linear algebra techniques. To extend to nonlinear systems we return to
graphical models. Here we describe inference using matrix factorization
as operations on graphical models, introducing the Bayes tree. We then
use the Bayes tree to obtain a fully incremental nonlinear inference al-
gorithm. Finally, marginalization leads to special cases of incremental
inference, namely filtering and fixed-lag smoothing.
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Figure 5.1: (top left) A map of ten floors of the MIT Stata Center created using a
reduced pose graph [104] in combination with a real-time visual SLAM system. The
data used was collected in 14 sessions spanning a six-month period. The total oper-
ation time was nine hours and the distance traveled was 11km. Elevator transitions
are shown as vertical blue lines. The view is orthographic and the vertical axis has
been exaggerated to make it easier to see each floor. The 2nd floor is approximately
90m across. (top right) Floor plans for each of the floors that were mapped. (bot-
tom) Map for one of the sessions covering the second floor of the MIT Stata Center
with ground truth floor plan added for reference. The dense point cloud consists of
RGB-D frames rendered at the solution of the pose graph. The pose graph itself is
derived from sparse stereo point features.
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5.1 Incremental Inference

We use a SLAM example to motivate the need for incremental infer-
ence. Imagine a robot operating in a building without a priori map.
While the robot is traversing rooms and corridors, a constant stream
of sensor data is generated. Processing the sensor data yields a sequence
of optimization problems that constantly grow in size: each new mea-
surement adds a new probabilistic constraint, while those induced by
previous measurements remain unchanged. Repeatedly solving the op-
timization problem after adding each measurement is essential: both
because the robot needs the best possible knowledge of the world given
its sensor measurements, but also because the current solution provides
an initialization point for the next optimization. The latter is essential
for nonlinear problems to not get stuck in local minima.

While the problem is small initially and can easily be solved repeat-
edly, the time to solve grows over time to the point that real-time batch
processing is no longer feasible. Figure 5.1 serves as an example: a map
generated from multiple sessions of a robot operating in a building,
totaling nine hours of operation time. Even though an approximation
is used to significantly reduce the size of the optimization problem (via
reduced pose graphs, see [104]) repeated batch optimization soon be-
comes too expensive. Instead, incremental updates that make use of
previous calculations are essential.

5.2 Updating a Matrix Factorization

In an incremental setting, we want to update the most recent matrix
factorization with the new measurements, to reuse the computation
that already incorporated all previous measurements. In the linear case,
this is possible through incremental factorization methods.

Recall that the linearization of a nonlinear objective function yields
the least-squares problem of Equation 2.13, repeated below,

∆∗ = argmin
∆

∑
i

‖A∆− b‖22 , (5.1)

where ∆ ∆= X −X0 is the state update vector, and A and b represent
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the sparse linearized system in ∆. Using Householder QR factorization,
as in Equation 2.19, we can rewrite the objective as:

‖A∆− b‖22 = ‖R∆− d‖22 + c, (5.2)

where c is a constant that reflects the sum of squared residuals of the
least-squares problem.

When a new measurement arrives, instead of updating and refac-
toring a new system A′|b′ from scratch, we have the option to modify
the previous factorization directly by QR-updating. Let us assume
that A′ is formed by adding a single new measurement row a> with
corresponding RHS element β, i.e.,

A′ =
[
A

a>

]
b′ =

[
b

β

]
. (5.3)

Then a QR update proceeds as follows: adding a> ∈ Rn to the previous
factor R ∈ Rn×n and the new scalar element β ∈ R to the previous RHS
d yields a new system Ra|da that is not yet in the correct factorized
form:

Ra =
[
R

a>

]
=
[
Q>

1

] [
A

a>

]
da =

[
d

β

]
. (5.4)

To bring this new system into the right form, a sequence of Givens
rotations can be determined that zero out the newly added row on
the left. While a full QR factorization uses Householder reflections to
zero out columns, Givens rotations are more appropriate for updating,
as only a sparse set of entries in a single row need to be zeroed out.

Updating a matrix factorization using Givens rotations is numer-
ically stable and accurate to machine precision if the rotations are
properly formed as described in Golub and Loan [84, Sec. 5.1]. The
updating process starts from the left-most non-zero entry below the di-
agonal (row i and column j with i > j) by applying the Givens rotation

G
∆=
[

cosφ sinφ
− sinφ cosφ

]
(5.5)

as shown in Figure 5.2. The parameter φ is chosen so that the (i, j)th
entry of A becomes 0.
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Figure 5.2: Using a Givens rotation as a step in transforming a (sparse) matrix
into upper triangular form. The entry marked ’x’ is eliminated, changing some of
the entries marked in red (dark), depending on sparsity.

A series of Givens rotations are applied to zero out the new row,
starting from the left-most nonzero entry (i, j1) and resulting in an
upper triangular matrix that contains the updated factor R′

Gjk . . . Gj2Gj1Ra =
[
R′

0

]
. (5.6)

Note that Givens rotations can introduce additional non-zero entries
in the new row so that k might be larger than the number of nonzero
entries in a. The RHS vector da is updated with the same sequence of
rotations to obtain d′.

After all is said and done, the incremental factorization is equivalent
to rewriting the updated objective without re-factoring A, as desired:

∥∥R′∆− d′∥∥2
2 = ‖A∆− b‖22 + ‖a∆− β‖22 + c′, (5.7)

where c′ is the updated sum of squared residuals from Equation 5.2.
Several steps of this update process for an exploration task are illus-

trated in Figure 5.3. New variables are added to the QR factorization by
expanding the factor R by the appropriate number of empty columns
and rows. This expansion is simply done before new measurement rows
containing the new variables are added. At the same time, the RHS
d is augmented by the same number of new rows. For more general
cases, including loop closure, more advanced methods are needed to
avoid fill-in as we will later see in Section 5.4.3.
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Figure 5.3: Incrementally updating the square-root information matrix for an ex-
ploration task: new measurement rows are added to the upper triangular factor R
and the right-hand side (RHS). The left column shows the updates for the first three
steps, the right column shows the update after 50 steps. The update operation is
symbolically denoted by ⊕. Entries that remain unchanged are shown in light blue.

5.3 Kalman Filtering and Smoothing

The Kalman filter and smoother [145] are special cases of incrementally
updating a linear system. For simplicity, let us consider the simplest
possible factor graph structure—a simple chain—which is most often
encountered in localization tasks, or for example in pose graph SLAM
in the absence of loop-closure detection. To make the connection with
the Kalman smoother we first describe the concept of marginalization
in factor graphs, and then discuss two popular methods in robotics that
are based on marginalization: fixed-lag smoothing and filtering.
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5.3.1 Marginalization

Even with incremental updating, memory usage and computation are
still unbounded in time; one solution is to remove older variables with-
out removing information, a process that is called marginalization.
Stated in terms of probability densities, if we have a joint density p(x, y)
over two variables x and y, then marginalizing out the variable x cor-
responds to integrating over x, i.e.,

p(y) =
∫
x
p(x, y), (5.8)

resulting in a density p(y) over the remaining variable y.
If the density p(x, y) is Gaussian and given in covariance form with

mean µ and covariance Σ, partitioned as follows:

p(x, y) = N (
[
µx
µy

]
,

[
Σxx Σxy

Σ>xy Σyy

]
), (5.9)

marginalization is simple, as the corresponding sub-block Σyy already
contains the covariance on y after marginalizing out x, i.e.,

p(y) = N (µy,Σyy). (5.10)

In contrast, if the density is given in information form with information
vector η and information matrix Λ, partitioned as follows:

p(x, y) = N (Λ−1
[
ηx
ηy

]
,

[
Λxx Λxy
Λ>xy Λyy

]−1

), (5.11)

the information matrix for y after marginalization is given by the Schur
complement of Λxx in the matrix Λ, i.e., Λyy − Λ>xyΛ−1

xxΛxy.
Variable elimination, or equivalently matrix factorization, repre-

sents an intermediate step between the covariance and information
forms: the factored or square-root information form. Hence, the joint
density is given as

p(x, y) = N (R−1d,R−1R−>), (5.12)

where
R =

[
Rxx Sxy

0 Ryy

]
d =

[
dx
dy

]
. (5.13)
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In this factored form, marginalization can be as easy as in the covari-
ance form, but only for a contiguous block of variables x that was
eliminated first. In matrix terms, marginalization is performed by re-
moving the first nx rows and columns of the square root information
matrix, where nx is the number of variables in x, yielding Ryy as the
new square-root information matrix on y, along with RHS dy.

In summary, whether we can easily marginalize or not depends:

• Covariance form: always easy, select rows and columns from Σ.

• Information form: always hard, involves Schur complement on Λ.

• Square-root information form: depends on the variable ordering.

In terms of graphical models, remember that the matrix R corresponds
to a directed acyclic graph with a topological order that follows the cho-
sen variable ordering. Hence, any variable that does not point to other
variables can always be marginalized out without any computation,
and the equivalent also holds for groups of variables. Below we will see
how this simple graphical way of thinking explains fixed-lag Kalman
smoothing and filtering in an intuitive way.

5.3.2 Fixed-lag Smoothing and Filtering

The fixed-lag smoother is an iterative algorithm that alternates a
measurement update step followed by a marginalization step to recur-
sively maintain a full density on the last n states. While in the literature
these algorithms are typically presented in terms of matrix operations,
it is instructive to view this in terms of graphical models, while keeping
in mind that the marginalization operation can be done quite effectively
in the square-root information form, as discussed above.

We explain the general scheme using an example. The graphi-
cal models corresponding to a linear fixed-lag smoothing example are
shown in Figure 5.4, for a lag of n = 3, where the state variables cor-
respond to robot poses. We discuss each step in detail below.

Figure 5.4a shows the Bayes net we would obtain after eliminating
a chain-like factor graph with four variables x1 . . . x4, corresponding to
the state of the system at four different moments in time. However,
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x1 x2 x3 x4

(a) Fully eliminated Bayes net after having seen four measurements. In a fixed-lag
smoothing scenario with n = 3, we “forget” about the pose x1, hence it is grayed out.
This is mathematically equivalent to marginalization.

x1 x2 x3 x4 x5

(b) At the next time step, the new pose x5 is predicted using a motion model factor,
and measured via a new unary factor, both colored red. We also convert back the
density on pose x4 to a unary factor, in black.

x1 x2 x3 x4 x5

(c) After eliminating x4 and then x5, we arrive back at a fully eliminated Bayes net.
In the linear case we do not have to re-eliminate x3, as it would yield the same result.

Figure 5.4: Fixed-lag smoothing for a localization scenario, which illustrates incre-
mental inference with the language of graphical models.

because the variable x1 is a leaf, i.e., it does not point to any other
variable, it can be marginalized without any further computation. This
is indicated in the figure by graying x1 out.

In Figure 5.4b, a new pose x5 is added to the system, along with a
new relative constraint between x4 and x5 and a unary measurement
constraint on x5. These are shown in the figure as a red binary and
unary factor, respectively. We now do something unexpected: the root
density p(x4) is converted back to a unary factor f(x4), indicated in
black in the figure. In other words, we build a small “mini factor graph”
on the two variables x4 and x5 that takes into account the previous
information on x4, as well as the measurements associated with the new
pose x5. Since we added an new variable, we marginalize out the now
oldest variable in the lag, the pose x2, leaving only the three variables
x3 . . . x5 in play (the marginalization step).
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Finally, in Figure 5.4c, we apply variable elimination again (the
measurement update step) to convert the factor graph portion back into
a Bayes net, first eliminating the oldest variable x4 and then x5. We end
up in a steady state where at any given time the joint density on the
three most recent variables is readily available. For example, in the last
panel, we can readily read off p(x3, x4, x5) = p(x3|x4, x5)p(x4|x5)p(x5).

The standard Kalman filter simply corresponds to using a fixed-
lag of n = 1 in the above scheme, and hence both smoother and filter
variants are readily explained in terms of simple graphical model oper-
ations. Note that simply dropping the earliest pose in the factor graph
(instead of the Bayes net resulting from elimination) is not equivalent
to marginalization, but results in a loss of information. Specifically, in-
formation gained from all previous measurements would be lost in such
an optimization scheme that is not the same as fixed-lag smoothing.

Note that the graphical operations of elimination and marginaliza-
tion above subsume matrix computations in this linear inference case:
eliminating a graph corresponds to matrix factorization, and marginal-
ization corresponds to dropping rows and columns, as explained in the
previous section. In addition, as we are adding one measurement at
a time, the factorization can be done incrementally using Givens ro-
tations, as explained in Section 5.2. When doing the computations in
square-root information form, these versions of the linear fixed-lag filter
and smoother are also called a square-root-information filter or SRIF
[15], or SRIS [110] in the smoother case.

5.4 Nonlinear Filtering and Smoothing

The desire of generalizing incremental inference to nonlinear problems
motivates the introduction of the Bayes tree graphical model. Matrix
factorization operates on linear systems, but as we discussed above
most inference problems in robotics of practical interest are nonlinear,
including SLAM. In the incremental matrix factorization story it is
far from obvious how re-linearization can be performed incrementally
without refactoring the complete matrix. To overcome this problem we
investigate inference in graphical models, and introduce a new graphical
model, the Bayes tree.



72 Incremental Smoothing and Mapping

It is well known that inference in a tree-structured graph is effi-
cient, and this includes the simple chain example we discussed above.
In contrast, the factor graphs associated with typical robotics problems
contain many loops. Still, we can construct a tree-structured graphical
model in a two-step process: first, perform variable elimination on the
factor graph (see Section 3.3.3) to obtain a Bayes net with a special
property. Second, exploit that special property to find a tree structure
over cliques in this Bayes net.

In particular, a Bayes net obtained by running the elimination al-
gorithm (Algorithm 3.1) on a factor graph satisfies a special property:
it is chordal, meaning that any undirected cycle of length greater than
three has a chord. A chord is an edge connecting two non-consecutive
vertices on the cycle. In AI and machine learning a chordal graph is
more commonly said to be triangulated. Because it is still a Bayes
net, the corresponding joint density p(X) is given by factorizing over
the individual variables xj ,

p(X) =
∏
j

p(xj |πj), (5.14)

where πj are the parent nodes of xj . However, although the Bayes net
is chordal, at this variable level it is still a non-trivial graph: neither
chain-like nor tree-structured. The chordal Bayes net for our running
toy SLAM example is shown in Figure 3.5e on page 36, and it is clear
that there is an undirected cycle x1 − x2 − l1.

5.4.1 The Bayes Tree

By identifying cliques (groups of fully connected variables) in this
chordal graph, the Bayes net may be rewritten as a Bayes tree. We in-
troduce this new, tree-structured graphical model to capture the clique
structure of the Bayes net. It is not obvious that cliques in the Bayes
net should form a tree. They do so because of the chordal property, al-
though we will not attempt to prove that here. Listing all these cliques
in an undirected tree yields a clique tree, also known as a junction
tree in AI and machine learning. The Bayes tree is just a directed
version of this that preserves information about the elimination order.
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x1 x2 x3x3

l1 l2

(a) Chordal Bayes net

(b) Bayes tree

X       X   X       

                   X 
              X   X 
         X   X       
     X            X 

(c) Square root informa-
tion matrix

Figure 5.5: The Bayes tree (b) and the associated square root information matrix
R (c) describing the clique structure in the chordal Bayes net (a) based on our
canonical example from Figure 1.3. A Bayes tree is similar to a clique tree, but
is better at capturing the formal equivalence between sparse linear algebra and
inference in graphical models. The association of cliques with rows in the R factor
is indicated by color.

More formally, a Bayes tree is a directed tree where the nodes rep-
resent cliques Ck of the underlying chordal Bayes net. In particular,
we define one conditional density p(Fk|Sk) per node, with the sepa-
rator Sk as the intersection Ck ∩ Πk of the clique Ck and its parent
clique Πk. The frontal variables Fk are the remaining variables, i.e.
Fk

∆= Ck \ Sk. We write Ck = Fk : Sk. The following expression gives
the joint density p(X) on the variables X defined by a Bayes tree:

p(X) =
∏
k

p(Fk|Sk). (5.15)

For the root Fr the separator is empty, i.e., it is a simple prior p(Fr)
on the root variables. The way Bayes trees are defined, the separator
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Sk for a clique Ck is always a subset of the parent clique Πk, and hence
the directed edges in the graph have the same semantic meaning as in
a Bayes net: conditioning.

Example. The Bayes tree associated with our canonical toy SLAM
problem (Figure 1.3) is shown in Figure 5.5 on the previous page. The
root clique C1 = {x2, x3} (shown in blue) comprises of x2 and x3, which
intersects with two other cliques, C2 = {l1, x1, x2} = {l1, x1} : {x2}
shown in green, and C3 = {l2, x3} = {l2} : {x3} shown in red. The
colors also indicate how the rows of square-root information matrix R
map to the different cliques, and how the Bayes tree captures indepen-
dence relationships between them. For example, the green and red rows
only intersect in variables that belong to the root clique, as predicted.

5.4.2 Updating the Bayes Tree

Incremental inference corresponds to a simple editing of the Bayes tree.
This view provides a better explanation and understanding of the oth-
erwise abstract incremental matrix factorization process. It also allows
us to store and compute the square root information matrix in the form
of a Bayes tree, a deeply meaningful sparse storage scheme.

To incrementally update the Bayes tree we proceed as in the fixed-
lag smoothing example in Figure 5.4, by selectively converting part of
the Bayes tree back into factor graph form. When a new measurement
is added this corresponds to adding a factor, e.g., a measurement in-
volving two variables will induce a new binary factor f(xj , xj′). In this
case, only the paths in the Bayes tree between the cliques containing
xj and xj′ and the root will be affected. The sub-trees below these
cliques are unaffected, as are any other sub-trees not containing xj or
xj′ . Hence, to update the Bayes tree, the affected parts of the tree are
converted back into a factor graph, and the new factor associated with
the new measurement is added to it. By re-eliminating this temporary
factor graph, using whatever elimination ordering is convenient, a new
Bayes tree is formed and the unaffected sub-trees can be reattached.

In order to understand why only the top part of the tree is affected,
we look at two important properties of the Bayes tree. These directly
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x2,x3

l1,x1 : x2 l2 : x3

x1

x2 x3

l1

x1,x2,x3

l1 : x1,x2 l2 : x3 x1

x2 x3

l1

Figure 5.6: Updating a Bayes tree with a new factor, based on the example in
Figure 5.5. The affected part of the Bayes tree is highlighted for the case of adding
a new factor between x1 and x3. Note that the right branch (green) is not affected
by the change. (top right) The factor graph generated from the affected part of the
Bayes tree with the new factor (dashed blue) inserted. (bottom right) The chordal
Bayes net resulting from eliminating the factor graph. (bottom left) The Bayes tree
created from the chordal Bayes net, with the unmodified right “orphan” sub-tree
from the original Bayes tree added back in.

arise from the fact that it encodes the information flow during elimi-
nation. The Bayes tree is formed from the chordal Bayes net following
the inverse elimination order. In this way, variables in each clique col-
lect information from their child cliques via the elimination of these
children. Thus, information in any clique propagates only upwards to
the root. Second, the information from a factor enters elimination only
when the first variable connected to that factor is eliminated. Combin-
ing these two properties, we see that a new factor cannot influence any
other variables that are not successors of the factor’s variables. How-
ever, a factor on variables having different (i.e., independent) paths to
the root means that these paths must now be re-eliminated to express
the new dependency between them.
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Algorithm 5.1 Updating the Bayes tree by recalculating a new Bayes
tree from all affected cliques.
1: function UpdateBayesTree(Bayes tree T , new factor f(J ))
2: For each affected variable in J :
3: Remove corresponding clique and all parent cliques up to root.
4: Store orphaned sub-trees Torph of removed cliques.
5: Convert removed cliques to factor graph and add factor f(J ).
6: Eliminate the factor graph into a chordal Bayes net (using any

convenient ordering).
7: Create a new Bayes tree T ’ from this new chordal Bayes net.
8: Insert the orphans Torph back into the new Bayes tree T ’.
9: return the updated Bayes Tree T ’.

Algorithm 5.1 shows the pseudo-code for the Bayes tree updat-
ing scheme, and Figure 5.6 shows how these incremental factoriza-
tion/inference steps are applied to our canonical SLAM example. In
this example, we add a new factor between x1 and x3, affecting only
the left branch of the tree, marked by the red dashed line in to top
left figure. We then create the factor graph shown in the top right fig-
ure by creating a factor for each of the clique densities, p(x2, x3) and
p(l1, x1|x2), and add the new factor f(x1, x3). The bottom right figure
shows the eliminated graph using the ordering l1, x1, x2, x3. And finally,
in the bottom left figure, the reassembled Bayes tree is shown consist-
ing of two parts: the Bayes tree derived from the eliminated graph, and
the unaffected clique from the original Bayes tree (shown in green).

Figure 5.7 shows an example of the Bayes tree for a small SLAM
sequence. Shown is the tree for step 400 of the well-known Manhattan
world simulated sequence by Olson et al. [157]. As a robot explores the
environment, new measurements only affect parts of the tree, and only
those parts are re-calculated.

5.4.3 Incremental Smoothing and Mapping

Putting all of the above together and addressing some practical con-
sideration about re-linearization yields a state of the art incremental,
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Figure 5.7: An example of the Bayes tree data structure for a small SLAM se-
quence. The incremental nonlinear least-squares estimation algorithm iSAM2 [109]
is based on viewing incremental factorization as editing the graphical model cor-
responding to the posterior probability of the solution, the Bayes tree. As a robot
explores the environment, new measurements often only affect small parts of the
tree, and only those parts are re-calculated (shown in red).

nonlinear approach to MAP estimation in robotics, iSAM2, summa-
rized below but described in full detail in [109]. The acronym “iSAM”
stands for incremental smoothing and mapping, and the first version
of it [111] used the incremental matrix factorization methods from
Section 5.2. However, linearization in iSAM1 was handled in a sub-
optimal way: it was done for the full factor graph at periodic instances
and/or when matrix fill-in became unwieldy. The second version of the
approach, iSAM2, uses a Bayes tree representation for the posterior
density. It then employs Bayes tree incremental updating as each new
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measurement comes in, as described above. Below we discuss the prac-
tical aspects of variable ordering, solution updating, and dealing with
non-linear measurements that together then constitute iSAM2.

What variable ordering should we use in re-eliminating the affected
cliques? Only the frontal variables in the affected part of the Bayes tree
are updated. One strategy then is to apply COLAMD locally to the
affected variables. However, in the incremental case we can do better:
To keep the size of the affected part of the tree smaller for future
updates, we force recently accessed variables to the end of the ordering,
i.e. into the root clique. For this incremental variable ordering strategy
one can use the constrained COLAMD (CCOLAMD) algorithm [40].
This both forces the most recently accessed variables to the end and
still provides a good overall ordering. Generally, subsequent updates
will then only affect a small part of the tree, and can therefore be
expected to be efficient in most cases, except for large loop closures.
Since only a subset of the variables are ordered independent of the rest
of the tree, the overall ordering generates somewhat more fill-in (larger
cliques), but in practice the difference is not large.

After updating the tree we also need to update the solution. Back-
substitution in the Bayes tree proceeds from the root (which does not
depend on any other variables) and proceeds to the leaves. However,
it is typically not necessary to recompute a solution for all variables:
Local updates to the tree often do not affect variables in remote parts of
the tree. Instead, at each clique we can check the difference in variable
estimates that is propagated downwards and stop when this difference
falls below a small threshold.

Our motivation for introducing the Bayes tree was to incremen-
tally solve nonlinear optimization problems. For this we selectively re-
linearize factors that contain variables whose deviation from the lin-
earization point (as obtained by back-substitution) exceeds a small
threshold. In contrast to the tree modification caused by adding new
factors, we now have to redo all cliques that contain the affected vari-
ables, not just as frontal variables, but also as separator variables. This
affects larger parts of the tree, but in most cases is still significantly
cheaper than recomputing the complete tree. We also have to go back
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to the original factors, instead of directly turning the cliques into a fac-
tor graph. And that requires caching certain quantities during elimina-
tion. The overall incremental nonlinear algorithm, iSAM2, is described
in much more detail in [109].

Just as we discussed the linear Kalman filter and fixed-lag smoother
in terms of graphical models, the well-known Extended Kalman Filter
and Smoother [145] can be seen as a special case of the iSAM2 algo-
rithm, where the Bayes tree reduces to a chain rather than a proper
tree. Or, another way to state this is that the Bayes tree representa-
tion enabled us to generalize the earlier non-linear estimators to general
graphical models. Indeed, iSAM and iSAM2 have been applied success-
fully to many different robotics estimation problems with non-trivial
constraints between variables that number into the millions, as will be
discussed in depth in Section 7.

5.5 Bibliographic Remarks

Updating of matrix factorizations is a well-known technique in many
areas, with applications such as computer vision [191, 117] and signal
processing [134]. Golub and Van Loan [84] present general methods for
updating matrix factorizations based on [83, 77], including the Givens
rotations we use in this work. Davis has done much work in the ar-
eas of variable ordering and factorization updates, and provides highly
optimized software libraries [40, 41] for various such tasks.

Kaess et al. [111] proposed incremental smoothing and mapping
(iSAM), which performs fast incremental updates of the square root
information matrix, yet is able to compute the full map and trajec-
tory at any time. New measurements are added using matrix update
equations [83, 77, 84], so that previously calculated components of the
square root information matrix are reused. However, to remain efficient
and consistent, iSAM requires periodic batch steps to allow for variable
reordering and re-linearization, which is expensive and detracts from
the intended online nature of the algorithm.

It is well known that a chordal Bayes net can be converted into a
tree-structured graphical model in which these operations are easy. This
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data structure is similar to the clique tree [165, 17, 121], also known as
the junction tree in the AI literature [32], which has also been exploited
for distributed inference in SLAM by Paskin [160], Dellaert et al. [49],
and Pinies et al. [164].

To combine the advantages of the graphical model and sparse linear
algebra perspectives, we propose a novel data structure, the Bayes tree,
first presented in Kaess et al. [107]. Our approach is based on viewing
matrix factorization as eliminating a factor graph into a Bayes net,
which is the graphical model equivalent of the square root information
matrix. However, the Bayes tree is directed and corresponds more nat-
urally to the result of QR and Cholesky factorization in linear algebra,
allowing us to analyze it in terms of conditional probability densities in
the tree. As trees of cliques in chordal graphs, Bayes trees are similar
to clique trees [17] and junction trees [121]. However, a Bayes tree is
directed and is semantically closer to a Bayes net in the way it encodes
a factored probability density.

As defined in [121], a cluster tree is a directed tree of clusters in
which the running intersection property holds, and each factor in the
original graph is associated with a cluster. The cluster tree is more
general than the junction tree or the clique tree. Ni and Dellaert [152]
proposed TSAM 2, a multi-level SLAM approach that combines nested
dissection [78, 135] with a cluster tree representation.

Exploiting the Bayes tree and the insights gained, we proposed
iSAM2 [108, 109], a novel incremental exact inference method that
allows for incremental reordering and just-in-time re-linearization.
iSAM2 extends our original iSAM algorithm by leveraging these in-
sights about the connections between graphical model and sparse lin-
ear algebra perspectives. To the best of our knowledge this is a com-
pletely novel approach to providing an efficient and exact solution to a
sparse nonlinear optimization problem in an incremental setting, with
general applications beyond SLAM. While standard nonlinear opti-
mization methods repeatedly solve a linear batch problem to update
the linearization point, our Bayes tree-based algorithm allows fluid re-
linearization of a reduced set of variables, which translates into higher
efficiency, while retaining sparseness and full accuracy.
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Some other SLAM algorithms employ direct equation solvers based
on Cholesky or QR factorization. Treemap [72] uses Cholesky factors
to represent probability distributions in a tree-based algorithm. How-
ever, multiple approximations are employed to reduce the complexity,
while iSAM solves the full and exact problem, and therefore allows
re-linearization of all variables at any time.

Beyond the use of better inference algorithms, the graph itself can
be simplified to further improve efficiency. The reduced pose graph by
Johannsson et al. [104] reuses spatially nearby poses to limit growth in
the number of variables to the size of the explored space, rather than
time. This is a special form of marginalization that is constructed in
such as way as not to make the graph more dense. General marginal-
ization can be combined with sparsification techniques as done by
Carlevaris-Bianco et al. [23].

The Bayes tree is not limited to inference over Gaussian densi-
ties. Segal and Reid [171] performs mixed discrete-continuous inference
over junction trees to deal with incorrect data association. The recently
proposed multi-modal iSAM (mmiSAM) algorithm by Fourie et al. [69]
exploits the Bayes tree structure for efficient inference over general den-
sities, obtaining not just a mean, but a complete posterior density that
can be non-Gaussian and multimodal. This is achieved by using non-
parametric belief propagation on the cliques of the Bayes tree, where
kernel density estimates approximate both intermediate and posterior
densities. Following iSAM2, the use of the Bayes tree is expected to
allow mmiSAM to be used in an incremental fashion.



6
Optimization on Manifolds

While in some robotics problems we can get away with vector-valued
unknowns, in most practical situations we have to deal with 3D rota-
tions and other nonlinear manifolds. These need a more sophisticated
machinery that takes into account their special structure. In this sec-
tion we discuss how to perform optimization on nonlinear manifolds,
which will build upon the optimization framework for vector spaces
from Sections 2, 3, and 4.

6.1 Attitude and Heading Estimation

Let us consider the following practical example: we would like to esti-
mate the unknown orientation R ∈ SO(3) of a robotic platform, which
is known to have three degrees of freedom. Indeed, the most common
way to refer to a robot’s orientation are the Euler angles: roll, pitch,
and yaw. Here roll and pitch together describe the platform’s attitude
with respect to level, and yaw is referred to as the platform’s heading.

However, the Euler angle representation suffers from singularities,
and hence we often prefer to represent R using a quaternion or a 3× 3
matrix. While these representations are over-parameterized, i.e., they

82
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use more than 3 numbers, they obey constraints that makes them re-
fer to the same underlying three-dimensional rotation manifold. Ap-
pendix B.3 defines the 3D rotation manifold and describes the different
representations in more detail.

Now, as an example, let us assume that we have access to an ac-
celerometer that is subject to no forces except gravity, and outputs a
three-dimensional measurement za ∈ R3. Furthermore, we assume that
we have access to the following measurement function that predicts the
accelerometer reading za from the rotation R:

ha : SO(3)→ R3 : R 7→ za. (6.1)

Given what we have seen so far, it is natural to try and estimate the
unknown rotation R by minimizing the least-squares error criterion

R∗ = argmin
R
‖ha(R)− za‖2Σ , (6.2)

where Σ is the measurement covariance for the accelerometer.
Unfortunately, since R lives on the three-dimensional manifold

SO(3), we cannot directly optimize over it. Indeed, suppose we use
the 3× 3 matrix representation for R, and initialize it to some matrix
R0, say the identity matrix I3. Then, to use any of the nonlinear op-
timization schemes we discussed above in Section 2, we need a notion
of how to move in the neighborhood of this initial estimate R0. If ro-
tations were vectors (which they are not) we could try to use vector
addition + as a candidate for a generalized addition operator ⊕:

R0 ⊕ ξ
∆= R0 + ξ. (6.3)

However, this does not quite work for 3D rotations, even if we prop-
erly vectorize the initial rotation estimate R0 to add the 9-dimensional
update vector ξ. This is because adding an arbitrary 3 × 3 matrix Ξ
obtained from a 9-dimensional vector ξ almost inevitably moves away
from the SO(3) manifold. In particular, the matrix R + Ξ is almost
surely no longer orthogonal. In addition, we know that rotations have
only three degrees of freedom, not nine, so it seems counter-intuitive
to work with 9-dimensional increments.
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6.1.1 Incremental Rotations

For 3D rotations, a good candidate for three-dimensional, vector-valued
increments can be obtained from the axis-angle representation (ω̄, θ).
As reviewed in appendix B.3, ω̄ ∈ S2 represents the axis of rotation,
and θ the angle by which we rotate. By multiplying both we obtain
a three-dimensional vector ξ ∆= ω̄θ ∈ R3 that combines both axis and
rotation angle. For small θ the corresponding rotation matrix R(ξ) is
well approximated by the matrix

R(ξ) ≈

 1 −ξz ξy
ξz 1 −ξx
−ξy ξx 1

 . (6.4)

The 3×3 matrix above is not on the SO(3) manifold, strictly speaking,
but it is at least close to the manifold for small ξ. We can write the
above more concisely as

R(ξ) ≈ I + ξ̂. (6.5)

Above, the hat operator creates a skew-symmetric matrix ξ̂ from ξ,
and is defined as

ξ̂
∆=

 0 −ξz ξy
ξz 0 −ξx
−ξy ξx 0

 . (6.6)

6.1.2 The Exponential Map

While Equation 6.5 is only approximate, the exponential map pro-
vides an exact mapping from 3-dimensional increments ξ onto proper
rotations. This is done by taking thematrix exponential of the quan-
tity ξ̂, as given by the following infinite series,

exp ξ̂ ∆=
∞∑
k=0

1
k! ξ̂

k = I + ξ̂ + ξ̂2

2! + ξ̂3

3! + . . . , (6.7)

where the powers are to be interpreted as matrix powers. Note that the
first two terms are identical to the approximation in Equation 6.5; the
other terms can be seen as increasingly smaller corrections to bring the
matrix R(ξ) back to the SO(3) manifold.
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While not always fully appreciated, the exponential map is exact for
arbitrarily large vectors ξ. In addition, the exponential map for SO(3)
is available in closed form, through Rodrigues’ formula:

exp ξ̂ = I + sin θ
θ

ξ̂ + 1− cos θ
θ2 ξ̂2. (6.8)

6.1.3 Local Coordinates

The notion of an exponential map allows us to define a mapping from
local coordinates ξ back to a neighborhood around the estimate R0,

R0 ⊕ ξ
∆= R0 · exp ξ̂, (6.9)

with ξ ∈ R3. In other words, we exponentiate the coordinates ξ around
the identity to create an incremental rotation that is composed with
the base rotation R0. Local coordinates equal to zero correspond to
R0 itself, and non-zero local coordinates ξ around zero are smoothly
mapped to a neighborhood of R0 on the rotation manifold. Because R3

is a vector space under addition, this will allow us to use R0 as the
linearization point in a nonlinear optimization scheme.

Indeed, after this re-parameterization, we can minimize for ξ in-
stead, starting from zero. We obtain the following estimator

ξ∗ = argmin
ξ
‖ha(R0e

ξ̂)− za‖2Σ = argmin
ξ
‖ga(ξ;R0)− za‖2Σ , (6.10)

where now ga(ξ;R0) ∆= ha(R0e
ξ̂) is a new measurement function defined

over the local coordinates ξ.
To minimize (6.10) we need a notion of how this new prediction

function ga(ξ;R0) behaves in the neighborhood of zero. Loosely speak-
ing, we need to find the 3× 3 Jacobian matrix GaR0

such that

ga(ξ;R0) ≈ h(R0) +GaR0ξ (6.11)

with ξ ∈ R3. A simple but computationally expensive way to calculate
GaR0

is numerical differentiation, but more advanced code-bases use
symbolic derivatives or some type of automatic differentiation [113, 47].
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Once equipped with the approximation (6.11), we can minimize the
linear objective function (6.10) with respect to the local coordinates ξ:

ξ∗ = argmin
ξ
‖h(R0) +GaR0ξ − za‖

2
Σ, (6.12)

using the techniques we discussed in the previous sections.
We can now proceed to using any non-linear optimization scheme

discussed in Section 2, but after each iteration of whatever nonlinear
optimization scheme we use, we need to update the base rotation R0 via
(6.9). As an example, the Gauss-Newton method would re-compute the
Jacobian GaR0

of the measurement function ga, and solve the approxi-
mate linear update step in 6.12 via

ξ∗ =
(
GaR0

)† (za − h(R0)) (6.13)

with .† denoting the pseudo-inverse. But since the measurement func-
tion h(.) can be highly nonlinear, a trust-region method such as
Levenberg-Marquardt might have to be used instead.

6.1.4 Incorporating Heading Information

An issue with the minimization in (6.10) is that the solution is not
well-defined using only a single accelerometer reading. Indeed, an ac-
celerometer does not give any information about the rotation around
the gravity vector! In practice, this will manifest itself in the fact that
the Jacobian GaR0

will be rank-deficient.
Additional information on R, e.g., using a magnetometer, is needed

to fully determine R in SO(3). A magnetometer yields a three-
dimensional reading zm ∈ R3 corresponding to the local magnetic field,
which will vary predictably when the magnetometer itself is rotated.
We can model this in the same way as above, through a measurement
function gm that models the magnetometer in terms of local (incre-
mental rotation) coordinates ξ:

gm(ξ;R0) ∆= hm(R0e
ξ̂). (6.14)

Of course, the detailed expression for gm and its Jacobian GmR0
will

differ substantially from the accelerometer case.
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ξ
za zm

Figure 6.1: Trivial factor graph for estimating attitude and heading by fusing both
accelerometer and magnetometer readings za and zm.

A full attitude and heading determination can then be achieved by
fusing both accelerometer and magnetometer readings za and zm. This
is done by minimizing the sum of squared residuals corresponding to a
trivial factor graph, shown in Figure 6.1 with a single unknown ξ and
two factors corresponding to za and zm, respectively:

ξ∗ = argmin
ξ
‖ga(ξ;R0)− za‖2Σ + ‖gm(ξ;R0)− zm‖2Σ . (6.15)

If we add time into this equation and introduce unknown rotation ma-
trices for successive time steps we can then estimate the changing 3D
orientation of a robotic platform over time.

While outside the scope of the current document, if in addition we
measure the difference between successive orientations through use of a
gyroscope, add variables to model the slowly varying accelerometer and
gyroscope biases, and integrate all these in a factor graph, we obtain a
fully-fledged attitude and heading reference system (AHRS) [63].

6.1.5 Planar Rotations

For completeness, and because this will be useful when we talk about
PoseSLAM in the next section, we now show that planar rotations can
be treated in a similar way, respecting their manifold nature. While it
is tempting to simply represent a planar rotation with an angle θ ∈
R, this does not accurately reflect the wrapping by 2π that so often
introduces bugs in code. Instead, as reviewed in Appendix B.1, the
nonlinear manifold SO(2) containing all orthonormal 2 × 2 matrices
accurately reflects this circular topology, using:

θ →
[

cos θ − sin θ
sin θ cos θ

]
. (6.16)
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For planar rotations R ∈ SO(2) the local parameterization ξ ∈ R is
one-dimensional, and the hat operator upgrades that to a 2×2 matrix:

ξ̂
∆=
[

0 −ξ
ξ 0

]
. (6.17)

Now, when we apply the exponential map (6.7), and by recognizing the
sine and cosine series, we obtain

∞∑
k=0

1
k! ξ̂

k =
[

1− ξ2/2 . . . −ξ + ξ3/6 . . .

ξ − ξ3/6 . . . 1− ξ2/2 . . .

]
=
[

cos ξ − sin ξ
sin ξ cos ξ

]
,

(6.18)
i.e., the closed-form expression that we know to be correct for SO(2).

Putting it all together, the SO(2) equivalent of the local update
equation (6.9) becomes

R0 ⊕ ξ
∆= R0 · exp ξ̂ (6.19)

=
[

cos θ0 − sin θ0
sin θ0 cos θ0

] [
cos ξ − sin ξ
sin ξ cos ξ

]
(6.20)

=
[

cos (θ0 + ξ) − sin (θ0 + ξ)
sin (θ0 + ξ) cos (θ0 + ξ)

]
, (6.21)

i.e., the effect is exactly the same as adding ξ to θ0, but with the
wrapping handled correctly.

6.2 PoseSLAM

In many robotics applications the main quantity of interest is the pose
of the robot over time, i.e., the robot’s trajectory. While we have
so far been content to talk about this in the abstract, we now need
to confront that poses, like rotations, live on a manifold as well. For
example, consider again the factor graph from Figure 2.1 in Section 2.
What is not apparent from the figure is that even in the planar case
the robot poses actually have three degrees of freedom: in addition to
a 2D position, they include the robot orientation.

PoseSLAM is a variant of simultaneous localization and mapping
(SLAM) where we only optimize over robot poses, and do not explicitly
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create a map of the environment. The goal of SLAM is to simultane-
ously localize a robot and map the environment given incoming sensor
measurements [59]. Besides wheel odometry, one of the most popular
sensors for robots moving on a plane is a 2D laser-range finder, which
provides both odometry constraints between successive poses, and loop-
closure constraints when the robot re-visits a previously explored part
of the environment. A LIDAR sensor can generate many thousands
to even millions of readings per second: it is impractical to explicitly
optimize over a dense 3D map of the environment. Instead, if we can
reconstruct the trajectory of robot poses over time, a dense 3D map can
be generated simply by re-projecting all LIDAR measurements into a
coordinate frame aligned with the first pose.

6.2.1 Representing Poses

Planar poses live on a three-dimensional, non-linear manifold. If we
know that the robot operates on a planar surface, we have three degrees
of freedom: translation (x, y) and heading. In particular, the robot poses
xi live on the Special Euclidean Group SE(2), a manifold obtained by
combining position (a two-dimensional vector space) with the nonlinear
manifold SO(2) of planar rotations, discussed above.

In many other applications we need to reason about the robot’s mo-
tion in 3D. In those cases we need to consider the full 6-DOF combined
position and orientation. A typical example is a quadrotor UAV, or any
autonomous ground-vehicle that needs to operate in uneven terrain. We
say that in that case the poses xi ∈ SE(3), a 6-dimensional manifold
resulting from combining positions in R3 with a three-dimensional ro-
tation matrix in SO(3). The details on how to represent poses in the
planar case and the full 3D case are in Appendices B.2 and B.4.

6.2.2 Local Pose Coordinates

The question then is how we can optimize over a set of 2D or 3D poses.
As we did for rotations, the solution is switching to a local parameter-
ization and using the exponential map to convert incremental updates
at each iteration back to the pose manifold. In the case of SE(2) and
SE(3) it is common to think about the rate of change and obtain an
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increment ξ by multiplying with a finite time ∆τ . In particular, we
define the angular velocity ω and translational velocity v, and
define ξ as

ξ
∆=
[
ω

v

]
∆τ (6.22)

respectively a 3D or 6D vector. The hat operator is then given by

ˆ:
[
ω

v

]
7−→

[
ω̂ v

0 0

]
, (6.23)

with ω̂ the result of applying the hat operator of the corresponding ro-
tation group to ω. In detail, for SE(2) and SE(3), we have respectively

ˆ: R3 → se(2) : ξ 7→

 0 −ωz vx
ωz 0 vy
0 0 0

∆τ (6.24)

ˆ: R6 → se(3) : ξ 7→


0 −ωz ωy vx
ωz 0 −ωx vy
−ωy ωx 0 vz

0 0 0 0

∆τ, (6.25)

where one recognizes the skew-symmetric matrices corresponding to
an incremental rotation in the top-left. Closed-form solutions of the
associated exponential maps exist as well, see for example [150].

In either case, we can again use the exponential map to define a
mapping from local pose coordinates ξ back to a neighborhood
around an initial pose estimate x0:

x0 ⊕ ξ
∆= x0 · exp ξ̂, (6.26)

where ξ ∈ R3 for planar poses x0 ∈ SE(2), and ξ ∈ R6 for 3D poses
x0 ∈ SE(3), and the hat operator is defined by (6.24) and (6.25),
respectively.

6.2.3 Optimizing over Poses

We now have the essential ingredients to optimize over poses x ∈ SE(2)
or x ∈ SE(3). For ease of exposition, let us consider a simple minimiza-
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tion problem in a single pose x ∈ SE(3):

x∗ = arg min
x
‖h(x)− z‖2Σ. (6.27)

As before, we assume that z ∈ Rm is a known, vector-valued measure-
ment. However, since the pose x ∈ SE(3) is not a vector, the mea-
surement function h : SE(3) → Rm is now a vector-valued function
defined on the SE(3) manifold. Two simple examples that we have
already encountered in Section 6.1 are predicting accelerometer and
magnetometer readings.

To minimize the objective function (6.27) we again need a notion
of how the nonlinear measurement function h(x) behaves in the neigh-
borhood of a base pose x0, typically the current linearization point.
Hence, we need to calculate the m× 6 Jacobian matrix H0 such that

h(x0 ⊕ ξ) ≈ h(x0) +H0ξ (6.28)

with ξ ∈ R6. The vector ξ is 6-dimensional, capturing all directions
we can move on the 6-dimensional pose manifold SE(3). As discussed
before, we can calculate H0 using numerical, symbolic, or automatic
differentiation.

Once equipped with the approximation (6.28), we can minimize the
objective function (6.27) with respect to the local coordinates ξ instead:

ξ∗ = argmin
ξ
‖h(x0) +H0ξ − z‖2Σ. (6.29)

6.2.4 PoseSLAM

In PoseSLAM we do not over a single pose, of course, but over all poses
in a robot trajectory that we want to reconstruct. Typically, two types
of factors will be involved: unary factors such as pose priors and/or
absolute pose measurements (e.g., from GPS) and binary factors, such
as relative pose constraints derived from LIDAR.

The factor graph for a simple PoseSLAM example is shown in Fig-
ure 6.2. To anchor the graph we add the unary factor f0(x1), and as the
robot travels through the world, binary factors ft(xt, xt+1) correspond-
ing to odometry are created. The red factor models a different event:
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x1 x2 x3

x4x5

f0(x1) f1(x1, x2) f2(x2, x3)

f3(x3, x4)

f4(x4, x5)

f5(x5, x2)

Figure 6.2: Factor graph for PoseSLAM with a loop closure constraint in red.

a loop closure. For example, the robot might recognize the same lo-
cation using vision or a laser range finder, and calculate the geometric
pose constraint to when it first visited this location. This is illustrated
for poses x5 and x2, which generates the loop closing factor f5(x5, x2).

Deriving the detailed expressions for the corresponding measure-
ment functions and their Jacobians is beyond the scope of this doc-
ument, but the final optimization will—in each iteration—minimize
over the local coordinates of all poses by summing over the following
linearized measurement factors:

Ξ∗ = argmin
Ξ

∑
i

‖h(xi) +Hiξi−z‖2Σ+
∑
k

‖g(xi, xj) + Fiξi +Gjξj−z‖2Σ.

(6.30)
Above Ξ ∆= {ξi} , the set of all incremental pose coordinates, h and g
are the unary and binary measurement functions, respectively, and Hi,
Fi and Gj their respective Jacobians.

6.3 Optimization over Lie Groups and Arbitrary Manifolds

While the rotation and rigid transformation groups are by far the most
important in robotics, the local parameterization technique above can
be generalized to any matrix Lie group and even to non-group nonlinear
manifolds. In fact, sometimes it is computationally advantageous to
forget about the Lie group structure and simply use local mappings
other than the exponential map. We discuss all of this below.
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6.3.1 Matrix Lie Groups

For any n-dimensional matrix Lie group G ⊂ GL(n), the quantity ξ̂

generated by the hat operator is an n × n matrix. These matrices,
together with a composition operator known as the Lie bracket, form
a separate algebraic structure known as the Lie algebra g associated
with G. The matrices ξ̂ are referred to as elements of the Lie algebra.

Generalizing the cases for SO(n) and SE(n) above, the hat operator
maps a vector ξ from Rn to g:

ˆ: Rn → g, ξ 7→ ξ̂. (6.31)

The inverse map also exists, and is known as the vee operator:

ˇ: g→ Rn, ξ̂ 7→ ξ. (6.32)

Hence, there is a one-to-one mapping between Rn and the Lie algebra
g associated with an n-dimensional manifold.

The exponential map defined by (6.7) allows us to define a mapping
from local coordinates ξ back to a neighborhood around any initial
estimate a ∈ G:

a⊕ ξ ∆= a · exp ξ̂. (6.33)
This generalizes the notion of exponentiating canonical coordinates ξ
around the identity to create an incremental transformation that is
composed with the base transformation a. Note that zero local coordi-
nates correspond to a itself, i.e.,

a⊕ 0 = a · exp 0̂ = a, (6.34)

and non-zero local coordinates ξ around the identity are smoothly
mapped to a neighborhood of a on the manifold. Because Rn is a vector
space under addition, this allows us to use a as the linearization point
in a nonlinear optimization scheme.

6.3.2 General Manifolds and Retractions

General manifolds M that do not possess a group structure can still
be handled by defining a retraction Ra :M× Rn →M, such that

a⊕ ξ ∆= Ra (ξ) . (6.35)
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Figure 6.3: For the sphere manifold, the local tangent plane with a local basis
provides the notion of local coordinates.

Here ξ ∈ Rn are the local coordinates, which have to be uniquely
defined for each point a on the manifold, and the retraction Ra maps
these back onto the manifold. A rigorous definition for retractions can
be found in [1], but informally we want it to be smooth and map the
identity in Rn back to a, i.e., Ra (0) = a.

Example. As discussed in Section B.5, an important two-
dimensional manifold that is not a group is the set of all directions
in 3D space, i.e., the sphere S2 of all unit vectors in R3:

S2 = {p ∈ R3| ‖p‖ = 1}. (6.36)
We can define local coordinates and a retraction for the sphere by

making use of tangent planes. Figure 6.3 shows the sphere S2 with a
local tangent plane at a point p. We write TpS2, and define it as all
three-vectors ξ̂ tangent to S2 at p, i.e.,

TpS
2 ∆=

{
ξ̂ ∈ R3|p>ξ̂ = 0

}
. (6.37)

To uniquely define local coordinates at a given point p we need to
define a basis Bp for the local tangent space TpS2. One way to choose
the local basis Bp is by using QR decomposition to write p = QR, where
Q is orthonormal and R is of the form [1 0 0]>. It follows that Q1 = p,
and we can use the two last columns of Q as the basis Bp = [Q2|Q3].
We can then write ξ̂ = Bpξ with ξ ∈ R2 for any tangent vector ξ̂.

As a retraction Rp(ξ), we can simply add ξ̂ = Bpξ to p and renor-
malize to get a new point q on the sphere:

q = Rp(ξ) = p+Bpξ

‖p+Bpξ‖
. (6.38)
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6.3.3 Retractions and Lie Groups

We can define many retractions for a given manifoldM, even for those
with group structure. For the vector space Rn the retraction is just
vector addition, and for Lie groups the obvious retraction is simply the
exponential map, i.e., Ra(ξ) = a ·exp ξ̂. However, one can choose other,
possibly more computationally attractive retractions, as long as around
a they agree with the geodesic induced by the exponential map, i.e.,

lim
ξ→0

∣∣∣a · exp ξ̂ −Ra (ξ)
∣∣∣

|ξ|
= 0. (6.39)

Example. For SE(3), instead of using the true exponential map it
is computationally more efficient to define a retraction which uses the
simpler expression v∆τ for the translation update:

RT (ξ) =
[
R t

0 1

] [
eω̂∆τ v∆τ

0 1

]
=
[
Reω̂∆τ t+Rv∆τ

0 1

]
.

(6.40)
In effect, both rotation and translation are updated separately, al-
though still in the original coordinate frame. In contrast to the above,
the exponential map takes into account the rotating coordinate frame
when updating the translation, and the corresponding trajectory is a
screw motion when plotted as a function of ∆τ . This correspond to a
rigid body with constant angular and translational velocity in the body
frame. However, for the purposes of optimization the exact mapping
away from zero does not matter all that much.

6.4 Bibliographic Remarks

The book by Murray, Li, and Sastry [150] is an excellent text on Lie
groups in robotics, albeit focused mainly on manipulation tasks. Op-
timization on manifolds using retractions is discussed in great detail
in [1]. Our exposition on local function behavior and the definition of
Jacobian matrices is taken from [177].



7
Applications

In this section we provide an overview of applications of factor graphs
for robot perception. This overview is aimed at showing the broad im-
pact factor graphs had in robot perception and is by no means intended
to represent a complete survey of the literature.

7.1 Inertial Navigation

An inertial measurement unit (IMU) is an important sensor in robotics,
because it provides high frequency information about a platform’s mo-
tion, which is crucial in several important applications such as au-
tonomous driving or autonomous flight. Unfortunately, IMUs are not
suitable for long-term navigation by themselves, because they quickly
accumulate error over time and, even more difficult to deal with, suffer
from measurement bias that also drifts over time. However, IMUs are
perfect to fill in the gaps between lower-frequency measurements such
as LIDARs, cameras, or GPS, and those sensors can in turn be used to
correct IMU drift. Factor graphs provide a very flexible framework in
which to fuse these two complimentary sources of information.

96
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Figure 7.1: Aided inertial navigation [103]. (a) Factor graph for visual odometry
integration with inertial bias estimation. (b) GPS integration (red factors) and/or
stereo integration (blue). (c) Evaluation on KITTI sequence: Incremental smoothing
performs almost as good as full batch optimization. Fixed-lag smoothing solutions
are also shown for various lags.
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In [102, 103] the plug and play capability of factor graphs is ex-
ploited in a navigation context (see Figure 7.1), with incremental
smoothing and mapping (iSAM) as the inference engine (see Section
5). To deal with the typically large update rates of IMUs, one can use
the idea by Lupton and Sukkarieh [143] to pre-integrate IMU mea-
surements between lower-rate measurements from other sensors such
as cameras and LIDARs. The use of IMU pre-integration is an excel-
lent way to balance computational efficiency with fixed-lag smoothing
in factor graphs.

These ideas were also exploited by Forster et al. [67, 68] in the con-
text of visual-inertial odometry or VIO. In these papers, a more
sophisticated integration scheme is coupled with fixed lag smoothing
to yield state-of-the-art performance. Leutenegger et al. [131, 132] also
present VIO and SLAM algorithms that are visualized as factor graphs.
And Usenko et al. [193] combine a semi-direct odometry algorithm with
inertial information, proposing a factor graph approach that essentially
follows the approach in [103]. However, instead of incremental smooth-
ing, they apply marginalization to only estimate the most recent state,
including inertial biases.

Finally, Mur-Artal and Tardos [149] added inertial sensing to their
prior ORB-SLAM system, a visual SLAM approach based on ORB
features detected in a video sequence. Here, inertial sensing is incorpo-
rated during tracking including bias estimation, while a local bundle
adjustment is used when adding new keyframes to the map.

7.2 Dense 3D Mapping

While sparse point clouds are sufficient for keeping a robot localized,
interaction with the environment requires a more complete map repre-
sentation. Common choices for dense 3D map representations include
point clouds, surfels (points with orientation), triangle meshes, and
planar surfaces.

Whelan et al. [197, 196] present a dense SLAM solution, Kintinu-
ous, that extends the local dense method KinectFusion to large envi-
ronments, see Figure 7.2. Loop closures are applied to a factor graph
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(a)

(b)

Figure 7.2: Real-time dense 3D mapping with Kintinuous [196]: (a) A dense vol-
umetric representation (TSDF) is used locally and shifted along with the camera.
The pose graph is drawn in pink with small cuboids as camera poses that have cloud
slices associated with them. Loop closure on the pose graph is transferred to the
point cloud via mesh deformation. (b) Sequence over two floors of an apartment with
over six million vertices that was constructed including online loop closure. Small
details such as bathroom fixtures and objects around the environment are clearly
reconstructed.
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that represents the poses of the trajectory, and the corresponding cor-
rections are transferred to the map, represented as a triangle mesh, by
applying a mesh deformation.

Dense methods can also be achieved on the object level. Salas-
Moreno et al. [170] present SLAM++, an object-based SLAM system
where landmarks correspond to objects such as chairs in the environ-
ment, for which a prior dense model can be available. The entire infer-
ence problem is posed in terms of factor graph optimization.

Planar surfaces are predominant in indoor environments, and this
information can be exploited in SLAM. Trevor et al. [190] formulate
this problem in the context of factor graph optimization. In [106] and
[99], we use infinite planes as landmarks in the factor graph and provide
a suitable retraction for optimization. The formulation is equivalent to
structure-from-motion with infinite planes instead of point features.
And, since the number of planar features is small per frame, the opti-
mization can be done in real-time even for large environments. Figure
7.3 provides examples of maps based on infinite planes.

7.3 Field Robotics

Factor graphs have proven to be useful in underwater robotics. Hover
et al. [98] apply them in the inspection of ship hulls and harbor in-
frastructure with a hovering autonomous underwater vehicle (HAUV),
see Figure 7.4. Factor graphs appear in localization and mapping with
sonar [185, 194], vision [118], and the creation of sonar mosaics [158].
The sparsification algorithm by Carlevaris-Bianco et al. [23] described
in Section 7.5 has been used for both long-term and multi-session op-
eration in underwater scenarios. Beall et al. [7] use factor graphs to
describe a large-scale bundle adjustment for underwater 3D reconstruc-
tion. Bichucher et al. [13] provide a bathymetric factor graph SLAM
algorithm that uses sparse point clouds generated from a Doppler ve-
locity log (DVL). Huang and Kaess [100] recently proposed a novel 3D
reconstruction method from multiple 2D sonar images termed acoustic
structure from motion (ASFM) that is formulated in terms of factor
graphs.
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(a)

(b)

(c)

Figure 7.3: Dense mapping system based on planar surfaces [99]. The factor graph
is similar to structure from motion, but with infinite planes instead of point features.
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Figure 7.4: Ship hull and harbor infrastructure inspection with an underwater
robot [98]. A factor graph formulation is used to fuse navigation and sonar data into
3D models. Camera images can be added when water turbidity allows.
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(a)

(b) (c)

Figure 7.5: Spatio-temporal reconstruction for crop monitoring [53]. (a) Recon-
structed 4D model of a peanut field. (b) Factor graph of multi-sensor SLAM. (c)
Factor graph connecting two rows with shared landmarks.
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In the agriculture domain, Carlone et al. [24], Dong et al. [53]
present a spatio-temporal reconstruction for crop monitoring. Figure
7.5 shows a 4D model of crop and the corresponding factor graph formu-
lation for fusing different sensor data. Similarly, Griffith and Pradalier
[88] use factor graphs for long-term natural environment monitoring,
performing the optimization with the GTSAM library.

Factor graphs have also found application in space. Tweddle et al.
[192] use factor graphs to model the rigid-body dynamics of a spinning
object in space. Their system has been tested with miniature satellites
called Spheres onboard the International Space Station.

Zhang et al. [205, 206] present a visual odometry method that is able
to use sparse depth information, such as for a separate LIDAR sensor,
or from an RGB-D camera with only parts of the scene within range of
the sensor. The optimization is implemented using factor graphs and
optimized using the iSAM library.

Many applications require a fine grained trajectory resolution: A
spinning laser range sensor that also moves takes each measurement
at a slightly different location along the trajectory, requiring a pose
estimate every fraction of a second. While interpolation between poses
in a factor graph is possible, it is natural to investigate continuous
time representations that can directly connect measurements and graph
optimization. Anderson et al. [4] present a factor-graph based solution
using Gaussian process regression. In a follow-up paper [5] they provide
a hierarchical wavelet decomposition that selectively provides higher
temporal trajectory resolution where needed. An incremental algorithm
for sparse GP regression has recently been presented by Yan et al. [202]
in the context of continuous trajectory estimation.

7.4 Robust Estimation and Non-Gaussian Inference

It is well known that least-squares optimization is very sensitive to out-
liers, such as may arise from errors in data association, i.e. wrongly as-
signing a new observation to an earlier observation. Even with very con-
servative strategies, it is practically unavoidable that eventually such
mistakes are made.
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There are various strategies to accommodate outliers in the op-
timization. One common strategy is the use of robust error func-
tions—error functions that are modified to increase less than quadrat-
ically far from the mean. Libraries for general least-squares optimiza-
tion that use factor graphs including GTSAM [47], iSAM [111] and
g2o [127] (the latter uses the terminology “hyper-graph” rather than
factor graph) provide the option of using these robust error functions in
the factors. Commonly used functions include the Huber and pseudo-
Huber cost functions (the Tukey biweight estimator and the Cauchy
function are less recommended).

As examples, in the long-term mapping example in Figure 5.1 on
page 63 [104], we used pseudo-Huber to deal with the occasional outlier.
Rosen et al. [168] introduced an incremental trust-region method that is
particularly useful in combination with robust estimators, where stan-
dard Gauss-Newton does not perform well, while Levenberg-Marquardt
cannot be incrementalized.

Alternatively, uncertain data association decisions can be modeled
in the graphical model with a discrete variable. Various strategies have
been proposed for solving such graphs, including switchable constraints
by Sunderhauf et al. [179, 180], max mixture [156], and “realizing,
reversing, recovering” (RRR) [128].

More recently, Segal and Reid [171] showed a method superior to
the previous three methods, based on message passing on a junction
tree. For the Gaussian case this is equivalent to our Bayes tree. In the
presence of discrete variables they provide an iterative algorithm that
first estimates the discrete variables, then the continuous ones.

While some of the robust estimation methods above can be re-
garded as non-Gaussian, they all rely on Gaussian inference and return
a Gaussian density as posterior. In contrast, non-Gaussian inference
make no such assumption on the posterior and can therefore represent
multi-modal posteriors, i.e. ambiguous solutions, where each mode ad-
ditionally can be non-Gaussian.

Fourie et al. [69] recently presented a novel approach to SLAM that
combines nonparametric belief propagation with the Bayes tree formu-
lation, see Figure 7.6. While the approach is necessarily approximate,
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(a) (b)

Figure 7.6: Non-Gaussian inference on the Bayes tree using kernel density esti-
mates [69]. (a) Intermediate steps and posterior are multimodal. (b) Data associ-
ation can be transformed into a multimodal estimation by marginalizing out the
discrete variable from the factor graph.

its feasibility has already been demonstrated for a SLAM problem with
thousands of variables and high ambiguity with a theoretical number
of modes larger than 2400. Here, in contrast to other approaches de-
scribed above, data association has been converted into a continuous,
but multimodal inference problem by integrating out any discrete vari-
ables such as those related to uncertainty in data association.

7.5 Long-term Operation and Sparsification

Even with efficient sparse and incremental methods as discussed in
this article, managing the growth in computational cost for long-term
mapping requires additional strategies.

The smoothing and mapping approach to SLAM suffers from un-
bounded growth over time, not just in the size of the explored environ-
ment. Johannsson et al. [104] addressed this problem by introducing
the reduced pose graph, which reuses previously generated poses in
the same area, see Figure 5.1 on page 63. Using this method, growth
of the factor graph is kept within bounds during construction.

An alternative and more general approach is to simplify a given
graph by sparsifying the graph in order to keep computation manage-
able. Carlevaris-Bianco et al. [23, 21, 22] presented such a method that
provides a consistent sparsification. In Figure 7.7, the original factor
graph is replaced by a much simpler version that closely approximates
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(a) GLC node removal and sparsification algorithm.

(b) Full graph (top view) (c) GLC reduced graph (top view)

(d) Full graph (time scaled) (e) GLC reduced graph (time scaled)

Figure 7.7: Generic linear constraints (GLC) node removal with optional Chow-Liu
tree sparsification [23]. (a) Overview of the algorithm. (b)-(e) The example shows
extensive outdoor data from 27 mapping sessions over a period of 15 months. The
oblique time scaled views visualize the more than ten-fold reduction in both the
number of nodes and factors.
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Figure 7.8: Three robots and a synthetic landmark used in the multi-robot mapping
experiment from [35] (left), and an aerial view of the parking lot in which the
experiment was performed (right).

the original system while maintaining consistency. Sparsification can
also be applied in combination with marginalization of variables that
are no longer needed, which is another way to keep the remaining graph
sparse. Mazuran et al. [146] recently extended this approach by adding
a convex optimization to better approximate nonlinear measurement
functions throughout the sparsification.

7.6 Large-scale and Distributed SLAM

As discussed in Section 4, large scale mapping can be approached
by a divide-and-conquer approach. Ni et al. [154] introduced the tec-
tonic smoothing and mapping (TSAM) algorithm which uses a single-
level partitioning of the associated factor graph, and the concept of
base nodes that allow a partition to move rigidly when optimizing
the separator between partitions. The ordering within each subgraph
was computed using the greedy ordering method COLAMD [3, 40].
This was later extended in [152] to a full nested-dissection approach
where the graph is recursively subdivided. As an example, Figure 4.8
on page 59 shows the recursive partitioning of the well-known Vic-
toria park dataset using this method. Partitioning at each level was
done using the METIS package [114]. Similar ideas were applied by
the same authors in the area of large-scale 3D reconstruction, in a
method called HyperSFM [153], but there the partitioning was done
using hyper-graph partitioning, again using METIS.
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Figure 7.9: Left: data association between 2 (out of 3) trajectories in the middle
of an experiment with the three robots from Figure 7.8. Measurement factors are
shown as translucent dark lines, trajectories as blue and green paths, and optimized
landmarks as black circles. Right: full final results for all three robots, at the end of
the experiment, this time omitting factors for clarity.

When multiple robotic platforms need to collaborate on solving a
large mapping problem, as illustrated in Figure 7.8, an obvious way of
partitioning the corresponding factor graphs is across multiple vehicles.
Factors originate from measurements, and hence it makes sense to keep
the factors local to the platform they were taken on. This is the ap-
proach adopted by DDF-SAM, introduced by Cunningham et al. [34].
Each robot optimizes a local factor graph, and communicates informa-
tion about shared variables of interest to the other robots in the form of
a marginal density (a factor, itself). Coordinate frame transformations
are handled using a novel constrained optimization scheme.

Results for the experiment with the robots from Figure 7.8 are
shown in Figure 7.9, as reported in [35]. In a subsequent iteration of this
framework, DDF-SAM 2 [33], the tedious bookkeeping in DDF-SAM
is avoided by introducing anti-factors, a new factor type that can
be used to subtract out information that would otherwise be double-
counted in the communication exchange.

Toohey et al. [189] also present a decentralized cooperative local-
ization algorithm formulated in terms of factor graphs. The algorithm
achieves constant message size over time by compressing the graph to
only the relevant information needed for the receiver based on inter-
vehicle measurements.
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Figure 7.10: Large City Navigation Scenario (3.3 kilometers) from the DARPA
ASPN project: Ground truth (blue), solution using only 1-step short-term smoother
(red, 3D RMS error: 19.19 meters), solution using the CSM scheme (green, 3D RMS
error: 5.85 meters), and the 3D landmarks constructed during the first loop (red
points inside the highlighted yellow box).

In a multi-robot setting, estimating the initially unknown transfor-
mations between the robot frames is a challenging problem. Kim et al.
[119] introduce anchor nodes as a way to establish a common refer-
ence frame in the factor graph in a centralized fashion. Indelman et al.
[101] provide a distributed algorithm to establish a common reference
frame based on EM, which was successfully applied to the real-time
distributed mapping of entire buildings using micro air vehicles [54].

In the case of a single camera or robot, cross-registration between
multiple sessions can be advantageous. McDonald et al. [147] presented
a visual SLAM system for large scale environments that implements
this idea. The multi-session capability can also be used to provide ad-
ditional robustness: If camera tracking is lost, a new session is started
and eventually connected back to prior sessions.

Yet another way to distribute computation is among threads on
the same robot: a high-priority thread that keeps accurate track of
the robot’s current state, and a lower-priority thread that refines a
more complete map in the background. This was formalized for general



7.6. Large-scale and Distributed SLAM 111

Figure 7.11: Plug-and-play navigation architecture developed in the DARPA
ASPN project, as detailed in [29, 30].

factor-graph inference methods in [112, 200] in a technique called con-
current filtering and smoothing, and applied successfully in a number
of challenging scenarios in a DARPA funded project (see Figure 7.10).
The scenarios included land, sea, and air trials, and used many different
sensors that could turn on or off at any given moment. The threaded,
concurrent nature of the computation afforded by this method was cru-
cial in attaining real-time performance in all these cases, even when a
fixed-lag smoother was substituted for the filter component as done by
Chiu et al. [29], termed concurrent smoothing and mapping (CSM).

The latter paper [29] also demonstrated some of the software engi-
neering advantages of working with and thinking about factor graphs.
Figure 7.11 shows the plug-and-play navigation architecture developed
in the DARPA ASPN project, which was made easy because each
type of measurement essentially corresponds to a single factor type.
At the bottom of the figure, the CSM scheme that combines a long-
term smoother with a short term fixed-lag smoother is visible.
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7.7 Summary

It is clear that the above is not meant to be a comprehensive review,
and factor graphs have been used in a variety of other settings, from cal-
ibration [126] and occupancy grid mapping [51] to connecting language
to robotic perception and action [195]. However, from the wide range
of applications for which factor graphs have been the method of choice
for representation, it becomes clear that they have made a large impact
as a unifying representation in robotics. We feel that this is because
they really map well to the actual measurements performed, therefore
providing a natural representation of the optimization problems arising
in robot perception.
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A
Multifrontal Cholesky Factorization

We recover sparse multifrontal Cholesky factorization if we in-
stead use partial Cholesky factorization when eliminating a single vari-
able. To enable this, when eliminating the variable xj , the product
factor ψ(xj , Sj) is handled in a slightly different way. In particular, we
define the augmented Jacobian matrix Âj

∆= [Āj |b̄j ] associated with
the product factor ψ(xj , Sj), and the corresponding augmented state
x̂

∆= [xj ;Sj ; 1]. We then have∥∥∥Āj [xj ;Sj ]− b̄j∥∥∥2

2
= x̂>(Â>j Âj)x̂, (A.1)

where Λ̂j
∆= Â>j Âj is the augmented Hessian matrix associated with

the product factor ψ(xj , Sj). As an example, eliminating l2 in the toy
example yields the product factor

Λ̂2 =

 A>52A52 +A>92A92 A>92A95 A>52b5 +A>92b9
− A>95A95 A>95b9
− − b>5 b5 + b>9 b9

 , (A.2)

which one can see to be the sum of two outer products, corresponding
to the factors φ5 and φ9.
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We partition Λ̂j into 4 blocks, isolating the blocks associated with
the variable xj , and perform the following partial Cholesky factoriza-
tion:

Λ̂j =
[

Λ̂11 Λ̂12
Λ̂21 Λ̂22

]
=
[
R>j
S> L>

] [
Rj S

L

]
. (A.3)

The upper triangular matrix Rj , satisfying R>j Rj = Λ̂11, will be iden-
tical to the one obtained by QR factorization up to possibly sign flips
on the diagonal. The remaining blocks S and L can be computed by

S = R−>j Λ̂12 (A.4)
L>L = S>S (A.5)

= Λ̂22 − Λ̂>12Λ̂−1
11 Λ̂12. (A.6)

The latter computation, known as the Schur complement, has a nice
information-theoretic interpretation: we downdate the information Λ̂22
on the separator Sj with the information we “consume” in order to
determine the eliminated variable xj . The more information Λ̂11 we
had on xj , the more information remains on the separator Sj .

After the partial Cholesky step, the algorithm proceeds by creating
a conditional density from R and S, given by

p(xj |Sj) ∝ exp
{
−1

2 ‖Rjxj + TjSj − dj‖22
}

(A.7)

with [Tj |dj ] = S. This conditional is exactly the same as the one we
recover via the QR path. Adding the new factor on the separator Sj
corresponding to L>L needs some care: we can indeed create a new
factor, but with the corresponding error

τ(Sj) = exp
{
−1

2 Ŝj
>(L>L)Ŝj

}
(A.8)

rather than the Jacobian form as used in Equation 3.20 on page 39.



B
Lie Groups and other Manifolds

Many of the unknown variables in robotics live in well-known continu-
ous transformation groups known as Lie groups. A rigorous definition
will take us too far afield, but roughly speaking a Lie group is simply
a manifold with a smooth group operation defined on it. The most
important examples are reviewed below.

B.1 2D Rotations

One of the simplest Lie groups is the space of 2D rotations with com-
position as the group operator, also known as the Circle Group. The
easiest way to define it is as the subset of all 2× 2 invertible matrices
that are both orthogonal and have determinant one, i.e., 2× 2 rotation
matrices. Because of this definition, people often refer to this Lie group
the as the Special Orthogonal Group in dimension 2, written as
SO(2). Here “special” refers to the unit determinant property.

The nonlinear orthogonality and unit determinant constraints
define a nonlinear, one-dimensional manifold within the larger 4-
dimensional space of 2 × 2 invertible matrices. In fact, the manifold
has the topology of a circle, but it remains a group: matrix multiplica-
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tion of two rotation matrices in SO(2) is closed, the identity matrix I2
is in SO(2), and the inverse element of each rotation R is its transpose
R>, which is also in SO(2). Hence, SO(2) is a subgroup of theGeneral
Linear Group GL(2) of 2× 2 invertible matrices.

What makes this Lie group stand out from all other groups we dis-
cuss below is that the group operation is commutative: R1R2 = R2R1
for all R1, R2 ∈ SO(2). This explains why people often simply repre-
sent a planar rotation with an angle θ ∈ R, and use scalar addition as
a proxy for the group operation. However, while matrix multiplication
respects the circle topology, scalar addition does not.

An important representation that does respect the wrap-around
property is the group of unit-norm complex numbers cos θ+ i sin θ ∈ C̄
with complex multiplication, which is isomorphic to SO(2).

In summary, these are the three most common representations used
for rotations: angles, complex numbers, and 2× 2 rotation matrices,

R→ C̄↔ SO(2) (B.1)

θ → cos θ + i sin θ ↔
[

cos θ − sin θ
sin θ cos θ

]
, (B.2)

where the first arrow indicates an (undesirable) many to-one mapping.

B.2 2D Rigid Transformations

Equipped with SO(2) we can model the orientation of robots moving
in the plane. Just as it was convenient to embed the one-dimensional
manifold SO(2) in GL(2), we likewise embed both orientation R ∈
SO(2) and position t ∈ R2 in the space of 3× 3 matrices, as follows:

T
∆=
[
R t

0 1

]
. (B.3)

The above defines the Special Euclidean Group SE(2). It is a sub-
group of the general linear group GL(3), with matrix multiplication as
the group operation. The identity element is I3 ∈ GL(3), and we have

T−1 =
[
R> −R>t
0 1

]
(B.4)
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and

T1T2 =
[
R1 t1
0 1

] [
R2 t2
0 1

]
=
[
R1R2 R1t2 + t1

0 1

]
. (B.5)

Note that composition in SE(2) is not commutative.
For planar robots, we can use elements of SE(2) to represent the

2D pose x of the robot, i.e., x ∈ SE(2). We can interpret a pose
xi = Ti ∈ SE(2) as the transformation that would take us from the
origin to the coordinate frame associated with the robot’s current pose.

Relative poses are also elements of SE(2): suppose xi = Ti and
xj = Tj , then we have

xj = Tj = TiT
−1
i Tj = xi(T−1

i Tj) = xiT
i
j (B.6)

and hence T ij
∆= T−1

i Tj is the transformation that takes xi to xj .
The natural group action associated with an element Ti ∈ SE(2)

transforms points pi ∈ R2 in coordinate frame i to points qg ∈ R2 in the
global frame by embedding both in P2 using homogeneous coordinates:[

qg

1

]
=
[
Ri ti
0 1

] [
pi

1

]
=
[
Rip

i + ti
1

]
. (B.7)

We write qg = Ti⊗ pi, and the change from local to global coordinates
is qg = Rip

i + ti, i.e., the local point pi is rotated and then translated.
To model measurements taken from a particular robot pose xi = Ti,

a more important question is: if we know the location of a landmark
lj = qg ∈ R2 in the global coordinate frame, what are its coordinates
pi in the robot’s frame? Since the inverse of Ri is R>i , the inverse
transformation follows easily from (B.7) as pi = R>i (qg − ti).

B.3 3D Rotations

The Lie group SO(3) of rotations in 3D (aka spatial rotations) is rep-
resented by the set of 3 × 3 matrices that are orthogonal and have
determinant 1. 3D rotations are important in robotics but also in nav-
igation and many other fields, and hence this Lie group is one of the
most studied and well-known structures in applied math.
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SO(3) is a three-dimensional manifold embedded within a 9-
dimensional ambient space, and forms a subgroup within GL(3) in
the same way SO(2) is a subgroup of GL(2). However, unlike planar
rotations, spatial rotations do not commute. In other words,

R1R2 6= R2R1 (B.8)

for most R1, R2 ∈ SO(3). Of course, since SO(2) is a subgroup of SO(3)
(keep any axis fixed), it is clear that some combinations of rotation
matrices do commute, just not all.

The subgroup relationship between SO(2) and SO(3) gives rise to
the commonly used axis-angle representation for spatial rotations. It
consists of the pair (ω̄, θ), where the axis ω̄ ∈ S2 is a unit vector on
the sphere and θ ∈ R is a rotation angle around this axis. Both can be
combined in a single three-vector ω = θω̄. While convenient for some
operations, composition of two rotations is cumbersome and is best
achieved by converting back to rotation matrices. In addition, because
of the dependence on a scalar angle θ, there is again an undesirable
many-to-one mapping from axis-angle to SO(3).

Another, very common way to represent 3D rotations is using unit
quaternions q ∈ Q̄, analogous to the role unit complex numbers play
for SO(2). Quaternions, like complex numbers, have a real part and
an imaginary part, but the imaginary part in quaternions is three-
dimensional, with axes i, j, and k. The easiest way to introduce unit-
quaternions as a way to represent rotations is by converting from the
axis angle representation,

(ω̄, θ)→ cos θ2 + (ω̄xi+ ω̄yj + ω̄zk) sin θ2 , (B.9)

which highlights that the axis ω̄ is encoded in the imaginary part.
Unit quaternions are more compact than 3× 3 matrices and, equipped
with quaternion multiplication, are almost isomorphic to SO(3). In-
deed, their only flaw is that there is a two-to-one mapping from Q̄
to SO(3): q and −q represent the same rotation. Despite this minor
annoyance, they are a popular representation in robotics.

Finally, the most intuitive but often problematic representation for
3D rotations consists of using Euler angles. These are quite useful
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from a readability point of view, because rotations around identity can
be easily understood as a combination of roll φ, pitch θ, and yaw
ψ—making the three degrees of freedom palatable where rotation ma-
trices and unit quaternions obfuscate. However, far from identity, Eu-
ler angles exhibit singularities which complicate optimizing over them
when used in those regimes.

In summary, these are the four most common representations used
for spatial rotations: axis-angle, unit quaternions, and 3 × 3 rotation
matrices, and Euler angles:

S2 × R↔ Q̄⇒ SO(3)← R3 (B.10)

(ω̄, θ)↔ cos θ2 + (ω̄xi+ ω̄yj + ω̄zk) sin θ2 ⇒ R← φ, θ, ψ, (B.11)

where the double arrow represents the double covering property of unit
quaternions, and the last arrow indicates the undesirable many to-one
mapping from Euler angles to rotation matrices (even more so now,
because of the inherent singularities).

B.4 3D Rigid Transformations

The full 6 DOF pose of a robot operating in free space or on undulating
terrain can be represented using rigid 3D transformations. The situa-
tion is completely analogous to the 2D case in Section B.2: we embed
a rotation matrix R ∈ SO(3) and a translation vector t ∈ R3 in a 4× 4
matrix

T
∆=
[
R t

0 1

]
(B.12)

to define the Special Euclidean Group SE(3) of rigid 3D trans-
formations. Again, the group operation is matrix multiplication, and
SE(3) is a subgroup of the 4× 4 invertible matrices GL(4).

B.5 Directions in 3D

An important nonlinear manifold that is not a group is the set of all
directions in 3D space. These are useful for reasoning about a robot’s
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orientation with respect to gravity, such as measured by an accelerome-
ter for instance. Another use case is visual odometry using a monocular
camera only, in which case absolute scale is unobservable between two
frames, but translation direction is.

A direction in space is conveniently represented by a unit 3-vector,
i.e., p =

[
x y z

]>
with the nonlinear constraint x2 + y2 + z2 = 1.

In other words, the manifold of directions in 3D space is the Sphere
in 3D, typically denoted S2. It is a two-dimensional manifold, as the
nonlinear constraint takes away one degree of freedom, and indeed, the
sphere is intuitively familiar to us as a two-dimensional surface.
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